Skip to main content
Log in

A Beurling-Blecher-Labuschagne Theorem for Noncommutative Hardy Spaces Associated with Semifinite von Neumann Algebras

  • Published:
Integral Equations and Operator Theory Aims and scope Submit manuscript

Abstract

We prove a Beurling-Blecher-Labuschagne theorem for \({H^\infty}\)-invariant spaces of \({L^p(\mathcal{M},\tau)}\) when \({0 < p \leq\infty}\), using Arveson’s non-commutative Hardy space \({H^\infty}\) in relation to a von Neumann algebra \({\mathcal{M}}\) with a semifinite, faithful, normal tracial weight \({\tau}\). Using the main result, we are able to completely characterize all \({H^\infty}\)-invariant subspaces of \({L^p(\mathcal{M} \rtimes_\alpha \mathbb{Z},\tau)}\), where \({\mathcal{M} \rtimes_\alpha \mathbb{Z} }\) is a crossed product of a semifinite von Neumann algebra \({\mathcal{M}}\) by the integer group \({\mathbb{Z}}\), and \({H^\infty}\) is a non-selfadjoint crossed product of \({\mathcal{M}}\) by \({\mathbb{Z}^+}\). As an example, we characterize all \({H^\infty}\)-invariant subspaces of the Schatten p-class \({S^p(\mathcal{H})}\), where \({H^\infty}\) is the lower triangular subalgebra of \({B(\mathcal{H})}\), for each \({0 < p \leq\infty}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arveson W.B.: Analyticity in operator algebras. Amer. J. Math. 89, 578–642 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bekjan T.N.: Noncommutative Hardy space associated with semi-finite subdiagonal algebras. J. Math. Anal. Appl. 429(2), 1347–1369 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bekjan T.N.: Noncommutative symmetric Hardy spaces. Integral Equ. Oper. Theory 81, 191–212 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bekjan T.N., Xu Q.: Riesz and Szegö type factorizations for noncommutative Hardy spaces. J. Oper. Theory 62, 215–231 (2009)

    MathSciNet  MATH  Google Scholar 

  5. Beurling A.: On two problems concerning linear transformations in Hilbert space. Acta Math. 81, 239–255 (1949)

    Article  MathSciNet  MATH  Google Scholar 

  6. Blecher D., Labuschagne L.E.: A Beurling theorem for noncommutative L p. J. Operator Theory 59, 29–51 (2008)

    MathSciNet  MATH  Google Scholar 

  7. Bochner S.: Generalized conjugate and analytic functions without expansions. Proc. Nat. Acad. Sci. USA 45, 855–857 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  8. Davidson, K.: Nest Algebras: Triangular Forms for Operator Algebras on Hilbert Space. Longman Scientific & Technical (1988)

  9. Dodds, P., Dodds, T.: Some properties of symmetric operator spaces, Proc. Centre Math. Appl. Austral. Nat. Univ., 29, Austral. Nat. Univ., Canberra (1992)

  10. Dodds P., Dodds T., Pagter B.: Noncommutative Banach function spaces. Mathematische Zeitschrift 201, 583–597 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  11. Dodds P., Dodds T., Pagter B.: Noncommutative Köthe duality. Trans. Am. Math. Soc. 339, 717–750 (1993)

    MathSciNet  MATH  Google Scholar 

  12. Exel R.: Maximal subdiagonal algebras. Am. J. Math. 110, 775–782 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  13. Fack T., Kosaki H.: Generalized s-numbers of \({\tau}\)-measurable operators. Pac. J. Math. 2, 269–300 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  14. Fang J., Hadwin D., Nordgren E., Shen J.: Tracial gauge norms on finite von Neumann algebras satisfying the weak Dixmier property. J. Funct. Anal. 255, 142–183 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  15. Halmos P.: Shifts on Hilbert spaces. J. Reine Angew. Math. 208, 102–112 (1961)

    MathSciNet  MATH  Google Scholar 

  16. Helson H.: Lectures on Invariant Subspaces. Academic Press, New York (1964)

    MATH  Google Scholar 

  17. Helson H., Lowdenslager D.: Prediction theory and Fourier series in several variables. Acta Math. 99, 165–202 (1958)

    Article  MathSciNet  MATH  Google Scholar 

  18. Hoffman K.: Analytic functions and logmodular Banach algebras. Acta Math. 108, 271–317 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kadison, R., Ringrose J.: Fundamentals of the Theory of Operator Algebras. Advanced Theory, vol. 2. Academic Press, Inc. (1986)

  20. Kunze R.A.: L p-Fourier transforms on locally compact unimodular groups. Trans. Am. Math. Soc. 89, 519–540 (1958)

    MathSciNet  MATH  Google Scholar 

  21. Ji G.: Maximality of semi-finite subdiagonal algebras. J. Shaanxi Normal Univ. Sci. Ed. 28, 15–17 (2000)

    MathSciNet  MATH  Google Scholar 

  22. Junge M., Sherman D.: Noncommutative L p-modules. J. Oper. Theory 53, 3–34 (2005)

    MathSciNet  MATH  Google Scholar 

  23. Marsalli M., West G.: Noncommutative H p spaces. J. Oper. Theory 40, 339–355 (1998)

    MathSciNet  MATH  Google Scholar 

  24. McCarthy C.A.: C p . Israel J. Math. 5, 249–271 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  25. McAsey, M., Muhly, P., Saito, K.: Nonselfadjoint crossed products (invariant subspaces and maximality). Trans. Am. Math. Soc. 248(2), 381–409 (1979)

  26. Nakazi T., Watatani Y.: Invariant subspace theorems for subdiagonal algebras. J. Oper. Theory 37, 379–395 (1997)

    MathSciNet  MATH  Google Scholar 

  27. Nelson E.: Notes on noncommutative integration. J. Funct. Anal. 15, 103–116 (1974)

    Article  MATH  Google Scholar 

  28. Neumann J.: Some matrix-inequalities and metrization of matric-space. Tomsk Univ. Rev. 1, 286–300 (1937)

    MATH  Google Scholar 

  29. Pisier, G., Xu, Q. Noncommutative Lp-spaces. Handbook of the geometry of Banach spaces, pp. 1459–1517. Amsterdam, 2 (2003)

  30. Sakai, S.: C*-algebras and W*-algebras. Springer, New York (1971)

  31. Saito K.S.: A note on invariant subspaces for finite maximal subdiagonal algebras. Proc. Am. Math. Soc. 77, 348–352 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  32. Saito K.S.: A simple approach to the invariant subspace structure of analytic crossed products. J. Oper. Theory 27(1), 169–177 (1992)

    MathSciNet  MATH  Google Scholar 

  33. Segal I.: A noncommutative extension of abstract integration. Ann. Math. 57, 401–457 (1952)

    Article  MATH  Google Scholar 

  34. Simon, B.: Trace ideals and their applications, London Mathematical Society Lecture Note Series, vol. 35, Cambridge University Press, Cambridge (1979)

  35. Srinivasan T.P.: Simply invariant subspaces. Bull. Am. Math. Soc. 69, 706–709 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  36. Srinivasan, T., Wang, J.K.: Weak*-Dirichlet algebras. Proceedings of the International Symposium on Function Algebras, Tulane University, 1965 (Chicago), Scott-Foresman, 216–249 (1966)

  37. Takesaki, M.: Theory of Operator Algebras I. Springer (1979)

  38. Xu Q.: On the maximality of subdiagonal algebras. J. Oper. Theory 54(1), 137–146 (2005)

    MathSciNet  MATH  Google Scholar 

  39. Xu, Q.: Operator spaces and noncommutative Lp, The part on noncommutative Lp-spaces. Lectures in the Summer School on Banach spaces and Operator spaces, Nankai University China, July 16–20 (2007)

  40. Yeadon F.: Noncommutative L p-spaces. Math. Proc. Cambridge Philos. Soc. 77, 91–102 (1975)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lauren B. M. Sager.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sager, L.B.M. A Beurling-Blecher-Labuschagne Theorem for Noncommutative Hardy Spaces Associated with Semifinite von Neumann Algebras. Integr. Equ. Oper. Theory 86, 377–407 (2016). https://doi.org/10.1007/s00020-016-2308-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00020-016-2308-z

Mathematics Subject Classification

Keywords

Navigation