Abstract
We show that several known facts concerning roots of matrices generalize to operator algebras and Banach algebras. We show for example that the so-called Newton, binomial, Visser, and Halley iterative methods converge to the root in Banach and operator algebras under various mild hypotheses. We also show that the ‘sign’ and ‘geometric mean’ of matrices generalize to Banach and operator algebras, and we investigate their properties. We also establish some other facts about roots in this setting.
This is a preview of subscription content, access via your institution.
References
Bartle R.G.: Newton’s method in Banach spaces. Proc. Am. Math. Soc. 6, 827–831 (1955)
Bearden C.A., Blecher D.P., Sharma S.: On positivity and roots in operator algebras. J. Integr. Equ. Oper. Theory 79, 555–566 (2014)
Beardon A.F.: Iteration of Rational Functions. Complex Analytic Dynamical Systems. Graduate Texts in Mathematics, vol. 132. Springer, New York (1991)
Bhatia R., Rosenthal P.: How and why to solve the operator equation AX − XB=Y. Bull. Lond. Math. Soc. 29(1), 1–21 (1997)
Bini D.A., Higham N.J., B. Meini: Algorithms for the matrix pth root. Numer. Algorithms 39, 349–378 (2005)
Blecher, D.P.: The generalization of C*-algebra methods via real positivity for operator and Banach algebras (2015, preprint)
Blecher D.P., Le Merdy C.: Operator algebras and their modules—an operator space approach. Oxford University Press, Oxford (2004)
Blecher D.P., Ozawa N.: Real positivity and approximate identities in Banach algebras. Pac. J. Math. 277, 1–59 (2015)
Blecher D.P., Read C.J.: Operator algebras with contractive approximate identities. J. Funct. Anal. 261, 188–217 (2011)
Blecher D.P., Read C.J.: Operator algebras with contractive approximate identities II. J. Funct. Anal. 264, 1049–1067 (2013)
Blecher D.P., Read C.J.: Order theory and interpolation in operator algebras. Studia Math. 225, 61–95 (2014)
Bonsall, F.F., Duncan, J.: Numerical ranges of operators on normed spaces and of elements of normed algebras. London Mathematical Society Lecture Note Series, vol. 2. Cambridge University Press, London (1971)
Choi M.D., Li C.K.: Numerical ranges of the powers of an operator. J. Math. Anal. Appl. 365(2), 458–466 (2010)
Crouzeix M.A.: A functional calculus based on the numerical range: applications. Linear Multilinear Algebra 56(1–2), 81–103 (2008)
Dales, H.G.: Banach algebras and automatic continuity, London Mathematical Society Monographs. New Series, vol. 24. Oxford Science Publications. The Clarendon Press, Oxford University Press, New York (2000)
Drury S.W.: Principal powers of matrices with positive definite real part. Linear Multilinear Algebra 63, 296–301 (2015)
Guo C.-H.: On Newton’s method and Halley’s method for the principal pth root of a matrix. Linear Algebra Appl. 432, 1905–1922 (2010)
Gustafson K.E., Rao D.K.M.: Numerical Range. The Field of Values of Linear Operators and Matrices, Universitext. Springer, New York (1997)
Haase, M.: The functional calculus for sectorial operators. Operator Theory: Advances and Applications, vol. 169. Birkhuser, Basel (2006)
Higham, N.J.: Functions of Matrices. Theory and Computation. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (2008)
Iannazzo B.: On the Newton method for the matrix pth root. SIAM J. Matrix Anal. Appl. 28, 503–523 (2006)
Iannazzo B.: A family of rational iterations and its application to the computation of the matrix pth root. SIAM J. Matrix Anal. Appl. 30, 1445–1462 (2006)
Kelley J.L., Vaught R.L.: The positive cone in Banach algebras. Trans. Am. Math. Soc. 74, 44–55 (1953)
Komatsu H.: Fractional powers of operators. Pac. J. Math. 19, 285–346 (1966)
Lawson J.D., Lim Y.: The geometric mean, matrices, metrics, and more. Am. Math. Mon. 108, 797–812 (2001)
Li C.-K., Rodman L., Spitkovsky I.M.: On numerical ranges and roots. J. Math. Anal. Appl. 282, 329–340 (2003)
Macaev V.I, Palant Ju.A.: On the powers of a bounded dissipative operator (Russian). Ukrain. Mat. Z. 14, 329–337 (1962)
Martinez, C., Sanz, M.: The theory of fractional powers of operators. North-Holland Mathematics Studies, vol. 187. North-Holland Publishing Co., Amsterdam (2001)
Nollau, V.: Über Potenzen von linearen Operatoren in Banachschen Räumen. Acta Sci. Math. (Szeged) 28, 107–121 (1967)
Palmer, T.W.: Banach algebras and the general theory of *-algebras, vol. I. Algebras and Banach algebras. Encyclopedia of Math. and its Appl., vol. 49. Cambridge University Press, Cambridge (1994)
Stampfli J.G., Williams J.P.: Growth conditions and the numerical range in a Banach algebra. Tohoku Math. J. 381, 417–596 (1968)
Sz.-Nagy, B., Foias, C., Bercovici, H. and Kerchy, L.: Harmonic Analysis of Operators on Hilbert Space, 2nd edn, Universitext. Springer, New York (2010)
Author information
Authors and Affiliations
Corresponding author
Additional information
In memoriam Charles Read—gentleman, brother, mathematical force of nature
Supported by a grant from the NSF.
Rights and permissions
About this article
Cite this article
Blecher, D.P., Wang, Z. Roots in Operator and Banach Algebras. Integr. Equ. Oper. Theory 85, 63–90 (2016). https://doi.org/10.1007/s00020-015-2272-z
Received:
Revised:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00020-015-2272-z
Mathematics Subject Classification
- Primary 47A64
- 47L10
- 47L30
- 47B44
- Secondary 15A24
- 15A60
- 47A12
- 47A60
- 47A63
- 49M15
- 65F30
Keywords
- Roots
- fractional powers
- geometric mean
- sign of operator
- Newton method for roots
- binomial method for square root
- accretive operator
- sectorial operator
- nonselfadjoint operator algebra
- numerical range
- functional calculus