Skip to main content

Roots in Operator and Banach Algebras

Abstract

We show that several known facts concerning roots of matrices generalize to operator algebras and Banach algebras. We show for example that the so-called Newton, binomial, Visser, and Halley iterative methods converge to the root in Banach and operator algebras under various mild hypotheses. We also show that the ‘sign’ and ‘geometric mean’ of matrices generalize to Banach and operator algebras, and we investigate their properties. We also establish some other facts about roots in this setting.

This is a preview of subscription content, access via your institution.

References

  1. Bartle R.G.: Newton’s method in Banach spaces. Proc. Am. Math. Soc. 6, 827–831 (1955)

    MathSciNet  MATH  Google Scholar 

  2. Bearden C.A., Blecher D.P., Sharma S.: On positivity and roots in operator algebras. J. Integr. Equ. Oper. Theory 79, 555–566 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  3. Beardon A.F.: Iteration of Rational Functions. Complex Analytic Dynamical Systems. Graduate Texts in Mathematics, vol. 132. Springer, New York (1991)

    Google Scholar 

  4. Bhatia R., Rosenthal P.: How and why to solve the operator equation AX − XB=Y. Bull. Lond. Math. Soc. 29(1), 1–21 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bini D.A., Higham N.J., B. Meini: Algorithms for the matrix pth root. Numer. Algorithms 39, 349–378 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  6. Blecher, D.P.: The generalization of C*-algebra methods via real positivity for operator and Banach algebras (2015, preprint)

  7. Blecher D.P., Le Merdy C.: Operator algebras and their modules—an operator space approach. Oxford University Press, Oxford (2004)

    Book  MATH  Google Scholar 

  8. Blecher D.P., Ozawa N.: Real positivity and approximate identities in Banach algebras. Pac. J. Math. 277, 1–59 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  9. Blecher D.P., Read C.J.: Operator algebras with contractive approximate identities. J. Funct. Anal. 261, 188–217 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  10. Blecher D.P., Read C.J.: Operator algebras with contractive approximate identities II. J. Funct. Anal. 264, 1049–1067 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  11. Blecher D.P., Read C.J.: Order theory and interpolation in operator algebras. Studia Math. 225, 61–95 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  12. Bonsall, F.F., Duncan, J.: Numerical ranges of operators on normed spaces and of elements of normed algebras. London Mathematical Society Lecture Note Series, vol. 2. Cambridge University Press, London (1971)

  13. Choi M.D., Li C.K.: Numerical ranges of the powers of an operator. J. Math. Anal. Appl. 365(2), 458–466 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  14. Crouzeix M.A.: A functional calculus based on the numerical range: applications. Linear Multilinear Algebra 56(1–2), 81–103 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  15. Dales, H.G.: Banach algebras and automatic continuity, London Mathematical Society Monographs. New Series, vol. 24. Oxford Science Publications. The Clarendon Press, Oxford University Press, New York (2000)

  16. Drury S.W.: Principal powers of matrices with positive definite real part. Linear Multilinear Algebra 63, 296–301 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  17. Guo C.-H.: On Newton’s method and Halley’s method for the principal pth root of a matrix. Linear Algebra Appl. 432, 1905–1922 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  18. Gustafson K.E., Rao D.K.M.: Numerical Range. The Field of Values of Linear Operators and Matrices, Universitext. Springer, New York (1997)

    Google Scholar 

  19. Haase, M.: The functional calculus for sectorial operators. Operator Theory: Advances and Applications, vol. 169. Birkhuser, Basel (2006)

  20. Higham, N.J.: Functions of Matrices. Theory and Computation. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (2008)

  21. Iannazzo B.: On the Newton method for the matrix pth root. SIAM J. Matrix Anal. Appl. 28, 503–523 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  22. Iannazzo B.: A family of rational iterations and its application to the computation of the matrix pth root. SIAM J. Matrix Anal. Appl. 30, 1445–1462 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  23. Kelley J.L., Vaught R.L.: The positive cone in Banach algebras. Trans. Am. Math. Soc. 74, 44–55 (1953)

    Article  MathSciNet  MATH  Google Scholar 

  24. Komatsu H.: Fractional powers of operators. Pac. J. Math. 19, 285–346 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  25. Lawson J.D., Lim Y.: The geometric mean, matrices, metrics, and more. Am. Math. Mon. 108, 797–812 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  26. Li C.-K., Rodman L., Spitkovsky I.M.: On numerical ranges and roots. J. Math. Anal. Appl. 282, 329–340 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  27. Macaev V.I, Palant Ju.A.: On the powers of a bounded dissipative operator (Russian). Ukrain. Mat. Z. 14, 329–337 (1962)

    Article  MathSciNet  Google Scholar 

  28. Martinez, C., Sanz, M.: The theory of fractional powers of operators. North-Holland Mathematics Studies, vol. 187. North-Holland Publishing Co., Amsterdam (2001)

  29. Nollau, V.: Über Potenzen von linearen Operatoren in Banachschen Räumen. Acta Sci. Math. (Szeged) 28, 107–121 (1967)

    MathSciNet  MATH  Google Scholar 

  30. Palmer, T.W.: Banach algebras and the general theory of *-algebras, vol. I. Algebras and Banach algebras. Encyclopedia of Math. and its Appl., vol. 49. Cambridge University Press, Cambridge (1994)

  31. Stampfli J.G., Williams J.P.: Growth conditions and the numerical range in a Banach algebra. Tohoku Math. J. 381, 417–596 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  32. Sz.-Nagy, B., Foias, C., Bercovici, H. and Kerchy, L.: Harmonic Analysis of Operators on Hilbert Space, 2nd edn, Universitext. Springer, New York (2010)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David P. Blecher.

Additional information

In memoriam Charles Read—gentleman, brother, mathematical force of nature

Supported by a grant from the NSF.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Blecher, D.P., Wang, Z. Roots in Operator and Banach Algebras. Integr. Equ. Oper. Theory 85, 63–90 (2016). https://doi.org/10.1007/s00020-015-2272-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00020-015-2272-z

Mathematics Subject Classification

  • Primary 47A64
  • 47L10
  • 47L30
  • 47B44
  • Secondary 15A24
  • 15A60
  • 47A12
  • 47A60
  • 47A63
  • 49M15
  • 65F30

Keywords

  • Roots
  • fractional powers
  • geometric mean
  • sign of operator
  • Newton method for roots
  • binomial method for square root
  • accretive operator
  • sectorial operator
  • nonselfadjoint operator algebra
  • numerical range
  • functional calculus