Skip to main content
Log in

Spectral Enclosure and Superconvergence for Eigenvalues in Gaps

  • Published:
Integral Equations and Operator Theory Aims and scope Submit manuscript

Abstract

We consider the problem of how to compute eigenvalues of a self-adjoint operator when a direct application of the Galerkin (finite-section) method is unreliable. The last two decades have seen the development of the so-called quadratic methods for addressing this problem. Recently a new perturbation approach has emerged, the idea being to perturb eigenvalues off the real line and, consequently, away from regions where the Galerkin method fails. We propose a simplified perturbation method which requires no á priori information and for which we provide a rigorous convergence analysis. The latter shows that, in general, our approach will significantly outperform the quadratic methods. We also present a new spectral enclosure for operators of the form AiB where A is self-adjoint, B is self-adjoint and bounded. This enables us to control, very precisely, how eigenvalues are perturbed from the real line. The main results are demonstrated with examples including magnetohydrodynamics, Schrödinger and Dirac operators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Betcke, T., Higham, N.J., Mehrmann, V., Schröder, C., Tisseur, F.: NLEVP: a collection of nonlinear eigenvalue problems (2011). (MIMS EPrint 2011.116)

  2. Boffi D., Brezzi F., Gastaldi L.: On the problem of spurious eigenvalues in the approximation of linear elliptic problems in mixed form. Math. Comput. 69(229), 121–140 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  3. Boffi D., Duran R.G., Gastaldi L.: A remark on spurious eigenvalues in a square. Appl. Math. Lett. 12(3), 107–114 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  4. Boulton L.: Limiting set of second order spectrum. Math. Comput. 75, 1367–1382 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  5. Boulton L., Boussaid N.: Non-variational computation of the eigenstates of Dirac operators with radially symmetric potentials. LMS J. Comput. Math. 13, 10–32 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  6. Boulton L., Levitin M.: On approximation of the eigenvalues of perturbed periodic Schrödinger operators. J. Phys. A Math. Theor. 40, 9319–9329 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  7. Boulton L., Strauss M.: On the convergence of second-order spectra and multiplicity. Proc. R. Soc. A 467, 264–275 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  8. Boulton L., Strauss M.: Eigenvalues enclosures and convergence for the linearized MHD operator. BIT Numer. Math. 52, 801–825 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chatelin F.: Spectral Approximation of Linear Operators. Academic Press, New York (1983)

    MATH  Google Scholar 

  10. Dauge M., Suri M.: Numerical approximation of the spectra of non-compact operators arising in buckling problems. J. Numer. Math. 10, 193–219 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  11. Davies E.B.: Spectral enclosures and complex resonances for general self-adjoint operators. LMS J. Comput. Math. 1, 42–74 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  12. Davies E.B., Plum M.: Spectral pollution. IMA J. Numer. Anal. 24, 417–438 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hansen A.C.: On the approximation of spectra of linear operators on Hilbert spaces. J. Funct. Anal. 254(8), 2092–2126 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  14. Hansen A.C.: Infinite dimensional numerical linear algebra; theory and applications. Proc. R. Soc. Lond. Ser. A. 466(2124), 3539–3559 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  15. Hansen A.C.: On the solvability complexity index, the n-pseudospectrum and approximations of spectra of operators. J. Am. Math. Soc. 24(1), 81–124 (2011)

    Article  MATH  Google Scholar 

  16. Kato T.: On the upper and lower bounds of eigenvalues. J. Phys. Soc. Jpn. 4, 334–339 (1949)

    Article  Google Scholar 

  17. Kato T.: Perturbation theory for nullity, deficiency and other quantities of linear operators. J. Anallyse Math. 6, 261–322 (1958)

    Article  MATH  Google Scholar 

  18. Kato T.: Perturbation Theory for Linear Operators. Springer, New York (1995)

    MATH  Google Scholar 

  19. Levitin M., Shargorodsky E.: Spectral pollution and second order relative spectra for self-adjoint operators. IMA J. Numer. Anal. 24, 393–416 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  20. Marletta M.: Neumann–Dirichlet maps and analysis of spectral pollution for non-self-adjoint elliptic PDEs with real essential spectrum. IMA J. Numer. Anal. 30, 917–939 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  21. Marletta M., Naboko S.: The finite section method for dissipative operators. Mathematika 60(2), 415–443 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  22. Marletta M., Scheichl R.: Eigenvalues in spectral gaps of differential operators. J. Spectr. Theory 2(3), 293–320 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  23. Rappaz J., Sanchez Hubert J., Sanchez Palencia E., Vassiliev D.: On spectral pollution in the finite element approximation of thin elastic membrane shells. Numer. Math. 75, 473–500 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  24. Schmidt K.M.: Critical coupling constants and eigenvalue asymptotics of perturbed periodic Sturm–Liouville operators. Commun. Math. Phys. 211, 465–485 (2000)

    Article  MATH  Google Scholar 

  25. Shargorodsky E.: Geometry of higher order relative spectra and projection methods. J. Oper. Theory 44, 43–62 (2000)

    MathSciNet  MATH  Google Scholar 

  26. Shargorodsky E.: On the limit behaviour of second order relative spectra of self-adjoint operators. J. Spectr. Theory 3(4), 535–552 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  27. Strauss M.: Quadratic projection methods for approximating the spectrum of self-adjoint operators. IMA J. Numer. Anal. 31, 40–60 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  28. Strauss M.: The second order spectrum and optimal convergence. Math. Comput. 82, 2305–2325 (2013)

    Article  MATH  Google Scholar 

  29. Strauss M.: The Galerkin method for perturbed self-adjoint operators and applications. J. Spectr. Theory 4(1), 113–151 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  30. Strauss M.: A new approach to spectral approximation. J. Funct. Anal. 267(8), 3084–3103 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  31. Tretter C.: Spectral Theory Of Block Operator Matrices And Applications. Imperial College Press, London (2008)

    Book  MATH  Google Scholar 

  32. Zimmermann S., Mertins U.: Variational bounds to eigenvalues of self-adjoint eigenvalue problems with arbitrary spectrum. Z. Anal. Anwend. 14, 327–345 (1995)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Strauss.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hinchcliffe, J., Strauss, M. Spectral Enclosure and Superconvergence for Eigenvalues in Gaps. Integr. Equ. Oper. Theory 84, 1–32 (2016). https://doi.org/10.1007/s00020-015-2247-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00020-015-2247-0

Mathematics Subject Classification

Keywords

Navigation