Skip to main content

The 3-Isometric Lifting Theorem

Abstract

An operator T on Hilbert space is a 3-isometry if \({T^{*n}T^{n}= I +n B_1 +n^{2} B_2}\) is quadratic in n. An operator J is a Jordan operator if J = U + N where U is unitary, N 2 = 0 and U and N commute. If T is a 3-isometry and \({c > 0,}\) then \({I-c^{-2} B_{2} + sB_{1} + s^{2}B_2}\) is positive semidefinite for all real s if and only if it is the restriction of a Jordan operator J = U + N with the norm of N at most c. As a corollary, an analogous result for 3-symmetric operators, due to Helton and Agler, is recovered.

This is a preview of subscription content, access via your institution.

References

  1. Agler J.: The Arveson extension theorem and coanalytic models. Integral Equ. Oper. Theory 5(5), 608–631 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  2. Agler, J.: Subjordan operators. PhD Thesis, Indiana University (1980)

  3. Agler J., Stankus M.: m-isometric transformations of Hilbert space II. Integral Equ. Oper. Theory 23(1), 1–48 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  4. Agler J., Stankus M.: m-isometric transformations of Hilbert space I. Integral Equ. Oper. Theory 21(4), 383–429 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  5. Agler J., Stankus M.: m-isometric transformations of Hilbert space III. Integral Equ. Oper. Theory 24(4), 379–421 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  6. Ball J.A., Helton J.W.: Nonnormal dilations, disconjugacy and constrained spectral factorization. Integral Equ. Oper. Theory 3(2), 216–309 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  7. Ball, J.A., Fanney, T.R.: Closability of differential operators and real sub-Jordan operators. In: Topics in Operator Theory: Ernst D. Hellinger Memorial Volume, pp. 93–156. Oper. Theory Adv. Appl., vol. 48. Birkhuser, Basel (1990)

  8. Bermdez T., Martinn A., Negrn E.: Weighted shift operators which are m-isometries. Integral Equ. Oper. Theory 68(3), 301–312 (2010)

    Article  Google Scholar 

  9. Bermdez, T., Martinn, A., Mller, V., Noda, J.A.: Perturbation of m-isometries by nilpotent operators. Abstr. Appl. Anal. Art. ID 745479 (2014)

  10. Gleason J., Richter S.: m-isometric commuting tuples of operators on a Hilbert space. Integral Equ. Oper. Theory 56(2), 181–196 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  11. Gu C., Stankus M.: Some results on higher order isometries and symmetries: Products and sums with a nilpotent operator. Linear Algebra Appl. 469, 500–509 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  12. Helton J.W.: Jordan operators in infinite dimensions and Sturm–Liouville conjugate point theory. Bull. Am. Math. Soc. 78, 57–61 (1971)

    Article  MathSciNet  Google Scholar 

  13. Helton, J.W.: Operators with a representation as multiplication by on a Sobolev space. Hilbert space operators and operator algebras. In: Proc. Internat. Conf., Tihany, pp. 279–287 (1970)

  14. Helton J.W.: Infinite dimensional Jordan operators and Sturm–Liouville conjugate point theory. Trans. Am. Math. Soc. 170, 305–331 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  15. McCullough S.: Sub-Brownian operators. J. Oper. Theory 22(2), 291–305 (1989)

    MathSciNet  MATH  Google Scholar 

  16. Patton L.J., Robbins M.E.: Composition operators that are m-isometries. Houston J. Math. 31(1), 255–266 (2005)

    MathSciNet  MATH  Google Scholar 

  17. Paulsen V.: Completely Bounded Maps and Operator Algebras, Cambridge Studies in Advanced Mathematics, vol. 78. Cambridge University Press, Cambridge (2002)

    Google Scholar 

  18. Richter S.: A representation theorem for cyclic analytic two-isometries. Trans. Am. Math. Soc. 328(1), 325–349 (1991)

    Article  MATH  Google Scholar 

  19. Rosenblum M., Rovnyak J.: Hardy Classes and Operator Theory. Oxford Mathematical Monographs. Oxford Science Publications, The Clarendon Press, Oxford University Press, New York (1985)

    Google Scholar 

  20. Stankus M.: m-isometries, n-symmetries and other linear transformations which are hereditary roots. Integral Equ. Oper. Theory 75(3), 301–321 (2013)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Scott McCullough.

Additional information

S. McCullough was partially supported by NSF Grants DMS-1101137 and DMS-1361501.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

McCullough, S., Russo, B. The 3-Isometric Lifting Theorem. Integr. Equ. Oper. Theory 84, 69–87 (2016). https://doi.org/10.1007/s00020-015-2240-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00020-015-2240-7

Mathematics Subject Classification

  • 47A20 (Primary)
  • 47A45
  • 47B99
  • 34B24 (Secondary)

Keywords

  • Dilation theory
  • 3-symmetric operators
  • 3-isometric operators
  • non-normal spectral theory
  • complete positivity
  • Wiener–Hopf factorization