Abstract
We discuss Kadison’s Carpenter’s Theorems in the context of their relation to majorisation, and we offer a new proof of his striking characterisation of the set of diagonals of orthogonal projections on Hilbert space.
This is a preview of subscription content, access via your institution.
References
Antezana, J., Massey, P., Ruiz, M., Stojanoff, D.: The Schur–Horn theorem for operators and frames with prescribed norms and frame operator. Ill. J. Math. 51(2), 537–560 (2007). (electronic)
Argerami, M., Massey, P.: A Schur–Horn theorem in II1 factors. Indiana Univ. Math. J. 56(5), 2051–2059 (2007)
Argerami, M., Massey, P.: A contractive version of a Schur–Horn theorem in II1 factors. J. Math. Anal. Appl. 337(1), 231–238 (2008)
Argerami, M., Massey, P.: The local form of doubly stochastic maps and joint majorization in II1 factors. Integral Equ. Oper. Theory 61(1), 1–19 (2008)
Argerami, M., Massey, P.: Towards the Carpenter’s theorem. Proc. Am. Math. Soc. 137(11), 3679–3687 (2009)
Argerami, M., Massey, P.: Schur–Horn theorems in II ∞ factors. Pac. J. Math. 261(2), 283–310 (2013)
Arveson, W.: Diagonals of normal operators with finite spectrum. Proc. Natl. Acad. Sci. USA 104(4), 1152–1158 (2007). (electronic)
Arveson, W., Kadison, R.V.: Diagonals of self-adjoint operators. In: Operator Theory, Operator Algebras, and Applications, volume 414 of Contemp. Math., pp. 247–263. American Mathematical Society, Providence (2006)
Avron, J., Seiler, R., Simon, B.: The index of a pair of projections. J. Funct. Anal. 120(1), 220–237 (1994)
Bercovici, H., Collins, B., Dykema, K., Li, W.S., Timotin, D.: Intersections of Schubert varieties and eigenvalue inequalities in an arbitrary finite factor. J. Funct. Anal. 258(5), 1579–1627 (2010)
Bercovici, H., Li, W.S.: Eigenvalue inequalities in an embeddable factor. Proc. Am. Math. Soc. 134(1), 75–80 (2006). (electronic)
Bercovici, H., Li, W.S., Timotin, D.: The Horn conjecture for sums of compact selfadjoint operators. Am. J. Math. 131(6), 1543–1567 (2009)
Bhatia, R.: Matrix analysis, volume 169 of Graduate Texts in Mathematics. Springer, New York (1997)
Bownik, M., Jasper, J.: The Schur–Horn theorem for operators with finite spectrum. Trans. Am. Math. Soc. (in press)
Bownik, M., Jasper, J.: Constructive proof of Carpenter’s Theorem. Can. Math. Bull. 57(3), 463–476 (2014)
Carlen, E.A., Lieb, E.H.: Short proofs of theorems of Mirsky and Horn on diagonals and eigenvalues of matrices. Electr. J. Linear Algebra 18, 438–441 (2009)
Chan, N.N., Li, K.H.: Diagonal elements and eigenvalues of a real symmetric matrix. J. Math. Anal. Appl. 91(2), 562–566 (1983)
Collins, B., Dykema, K.: A linearization of Connes’ embedding problem. N. Y. J. Math. 14, 617–641 (2008)
Collins, B., Dykema, K.: On a reduction procedure for Horn inequalities in finite von Neumann algebras. Oper. Matrices 3(1), 1–40 (2009)
Collins, B., Dykema, K.J.: A nonconvex asymptotic quantum Horn body. N. Y. J. Math. 17, 437–444 (2011)
Dhillon, I.S., Heath, R.W., Jr., Sustik, M.A., Tropp, J.A.: Generalized finite algorithms for constructing Hermitian matrices with prescribed diagonal and spectrum. SIAM J. Matrix Anal. Appl. 27(1), 61–71 (2005), (electronic)
Dykema, K.J., Fang, J., Hadwin, D.W., Smith, R.R.: The carpenter and Schur–Horn problems for masas in finite factors. Ill. J. Math. 56(4), 1313–1329 (2012)
Effros, E.G.: Why the circle is connected: an introduction to quantized topology. Math. Intell. 11(1), 27–34 (1989)
Hiai, F.: Majorization and stochastic maps in von Neumann algebras. J. Math. Anal. Appl. 127(1), 18–48 (1987)
Hiai, F.: Spectral majorization between normal operators in von Neumann algebras. In: Operator Algebras and Operator Theory (Craiova, 1989), volume 271 of Pitman Res. Notes Math. Ser., pp. 78–115. Longman Sci. Tech., Harlow (1992)
Hiai, F., Nakamura, Y.: Majorizations for generalized s-numbers in semifinite von Neumann algebras. Math. Z. 195(1), 17–27 (1987)
Horn, A.: Doubly stochastic matrices and the diagonal of a rotation matrix. Am. J. Math. 76, 620–630 (1954)
Jasper, J.: The Schur–Horn theorem for operators with three point spectrum. J. Funct. Anal. 265(8), 1494–1521 (2013)
Kadison, R.V.: The Pythagorean theorem. I. The finite case. Proc. Natl. Acad. Sci. USA 99(7), 4178–4184 (2002). (electronic)
Kadison, R.V.: The Pythagorean theorem. II. The infinite discrete case. Proc. Natl. Acad. Sci. USA 99(8), 5217–5222 (2002). (electronic)
Kaftal, V., Weiss, G.: A survey on the interplay between arithmetic mean ideals, traces, lattices of operator ideals, and an infinite Schur-Horn majorization theorem. In: Hot Topics in Operator Theory, volume 9 of Theta Ser. Adv. Math., pp. 101–135. Theta, Bucharest (2008)
Kaftal, V., Weiss, G.: An infinite dimensional Schur–Horn theorem and majorization theory. J. Funct. Anal. 259(12), 3115–3162 (2010)
Kamei, E.: Majorization in finite factors. Math. Japon. 28(4), 495–499 (1983)
Klyachko, A.A.: Stable bundles, representation theory and Hermitian operators. Selecta Math. (N.S.) 4(3), 419–445 (1998)
Knutson, A., Tao, T.: The honeycomb model of GL n (C) tensor products. I. Proof of the saturation conjecture. J. Am. Math. Soc. 12(4), 1055–1090 (1999)
Knutson, A., Tao, T., Woodward C.: The honeycomb model of \({{\rm GL}_n(\mathbb{C})}\) tensor products. II. Puzzles determine facets of the Littlewood–Richardson cone. J. Am. Math. Soc. 17(1), 19–48 (2004)
Leite, R.S., Richa, T.R.W., Tomei, C.: Geometric proofs of some theorems of Schur–Horn type. Linear Algebra Appl. 286(1–3), 149–173 (1999)
Marshall, A.W., Olkin, I., Arnold, B.C.: Inequalities: theory of majorization and its applications. Springer Series in Statistics, 2nd edn. Springer, New York (2011)
Mirsky, L.: Matrices with prescribed characteristic roots and diagonal elements. J. Lond. Math. Soc. 33, 14–21 (1958)
Neumann, A.: An infinite-dimensional version of the Schur–Horn convexity theorem. J. Funct. Anal. 161(2), 418–451 (1999)
Ravichandran, M.: The Schur–Horn Theorem in von Neumann algebras. preprint. arXiv:1209.0909
Schur, I.: Über eine Klasse von Mittelbildungen mit Anwendung auf die Determinantentheorie. S.-Ber. Berliner math. Ges. 2, 9–20 (1923)
Author information
Authors and Affiliations
Corresponding author
Additional information
This work was supported in part by the NSERC Discovery Grant program.
Rights and permissions
About this article
Cite this article
Argerami, M. Majorisation and the Carpenter’s Theorem. Integr. Equ. Oper. Theory 82, 33–49 (2015). https://doi.org/10.1007/s00020-014-2180-7
Received:
Revised:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00020-014-2180-7