Baranov A., Bessonov R., Kapustin V.: Symbols of truncated Toeplitz operators. J. Funct. Anal. 261(12), 3437–3456 (2011)
MathSciNet
Article
Google Scholar
Baranov A., Chalendar I., Fricain E., Mashreghi J., Timotin D.: Bounded symbols and reproducing kernel thesis for truncated Toeplitz operators. J. Funct. Anal. 259(10), 2673–2701 (2010)
MathSciNet
Article
Google Scholar
Belov Y., Mengestie T.Y., Seip K.: Unitary discrete Hilbert transforms. J. Anal. Math. 112, 383–393 (2010)
MathSciNet
Article
Google Scholar
Bessonov, R.V.: Duality Theorems for Coinvariant Subspaces of H
1. arXiv:1401.0452
Clark D.N.: One dimensional perturbations of restricted shifts. J. Anal. Math. 25, 169–191 (1972)
Article
Google Scholar
Dorronsoro J.R.: Mean oscillation and Besov spaces. Can. Math. Bull. 28(4), 474–480 (1985)
MathSciNet
Article
Google Scholar
Dunford, N., Schwartz, J.T.: Linear operators. Part I. Wiley Classics Library. General theory, With the assistance of William G. Bade and Robert G. Bartle (reprint of the 1958 original, A Wiley-Interscience Publication). Wiley, New York (1988)
Garcia, S.R., Ross, W.T.: Recent progress on truncated Toeplitz operators. In: Blaschke products and their applications. Volume 65 of Fields Institute Communication, pp. 275–319. Springer, New York (2013)
Garcia, S.R., Ross, W.T., Wogen, W.R.: C*-algebras generated by truncated toeplitz operators. In: Concrete Operators, Spectral Theory, Operators in Harmonic Analysis and Approximation. Volume 236 of Operator Theory: Advances and Applications, pp. 181–192. Springer, Basel (2014)
Hartman Philip: On completely continuous Hankel matrices. Proc. Am. Math. Soc. 9, 862–866 (1958)
Article
Google Scholar
Kapustin, V.V.: On wave operators on the singular spectrum. Zap. Nauchn. Sem. S. Peterburg. Otdel. Mat. Inst. Steklov. (POMI). 376, 48–63, 181 (2010) (Issledovaniya po Lineinym Operatoram i Teoriya Funktsii. 38)
Kapustin V.V.: Cauchy-type integrals and singular measures. Algebra Anal. 24(5), 72–93 (2012)
MathSciNet
Google Scholar
Koosis, P.: Introduction to H
p
spaces. Volume 115 of Cambridge Tracts in Mathematics, 2nd edn. Cambridge University Press, Cambridge (1998) (with two appendices by V.P. Havin, Viktor Petrovich Khavin)
Mortini R., Wick B.D.: Spectral characteristics and stable ranks for the Sarason algebra H
∞ + C. Michigan Math. J. 59(2), 395–409 (2010)
MathSciNet
Article
Google Scholar
Nikolskii, N.K.: Treatise on the shift operator. Volume 273 of Grundlehren der Mathematischen Wissenschaften (Fundamental Principles of Mathematical Sciences). Springer-Verlag, Berlin (1986) (spectral function theory, with an appendix by S.V. Hruščev (S.V. Khrushchëv) and V.V. Peller, translated from the Russian by Jaak Peetre)
Peller V.V.: Wiener–Hopf operators on a finite interval and Schatten–von Neumann classes. Proc. Am. Math. Soc. 104(2), 479–486 (1988)
MathSciNet
Article
Google Scholar
Peller, V.V.: Hankel operators and their applications. Springer Monographs in Mathematics. Springer-Verlag, New York (2003)
Poltoratski, A., Sarason, D.: Aleksandrov–Clark measures. In: Recent advances in operator-related function theory. Volume 393 of Contemporary Mathematics, pp. 1–14. American Mathematical Society, Providence, RI (2006)
Poltoratskiĭ A.G.: Boundary behavior of pseudocontinuable functions. Algebra Anal. 5(2), 189–210 (1993)
Google Scholar
Ricci F., Taibleson M.: Boundary values of harmonic functions in mixed norm spaces and their atomic structure. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 10(1), 1–54 (1983)
MathSciNet
Google Scholar
Rochberg R.: Toeplitz and Hankel operators on the Paley–Wiener space. Integr. Equ. Oper. Theory 10(2), 187–235 (1987)
MathSciNet
Article
Google Scholar
Sarason D.: Generalized interpolation in H
∞.. Trans. Am. Math. Soc. 127, 179–203 (1967)
MathSciNet
Google Scholar
Sarason D.: Algebraic properties of truncated Toeplitz operators. Oper. Matrices 1(4), 491–526 (2007)
MathSciNet
Article
Google Scholar
Singh D., Singh U.N.: Invariant subspaces in VMOA and BMOA. Michigan Math. J. 41(2), 211–218 (1994)
MathSciNet
Article
Google Scholar
Sz.-Nagy, B., Foias, C., Bercovici, H., Kérchy, L.: Harmonic analysis of operators on Hilbert space. Universitext, 2nd edn. Springer, New York (2010)
Wolff T.H.: Two algebras of bounded functions. Duke Math. J. 49(2), 321–328 (1982)
MathSciNet
Article
Google Scholar