Skip to main content
SpringerLink
Account
Menu
Find a journal Publish with us
Search
Cart
  1. Home
  2. Integral Equations and Operator Theory
  3. Article

Crossed Products for Interactions and Graph Algebras

  • Open access
  • Published: 04 June 2014
  • volume 80, pages 415–451 (2014)
Download PDF

You have full access to this open access article

Integral Equations and Operator Theory Aims and scope Submit manuscript
Crossed Products for Interactions and Graph Algebras
Download PDF
  • B. K. Kwaśniewski1,2 
  • 503 Accesses

  • 6 Citations

  • 1 Altmetric

  • Explore all metrics

Cite this article

Abstract

We consider Exel’s interaction \({(\mathcal{V, H})}\) over a unital C*-algebra A, such that \({\mathcal{V}(A)}\) and \({\mathcal{H}(A)}\) are hereditary subalgebras of A. For the associated crossed product, we obtain a uniqueness theorem, ideal lattice description, simplicity criterion and a version of Pimsner–Voiculescu exact sequence. These results cover the case of crossed products by endomorphisms with hereditary ranges and complemented kernels. As model examples of interactions not coming from endomorphisms we introduce and study in detail interactions arising from finite graphs.

The interaction \({(\mathcal{V, H})}\) associated to a graph E acts on the core \({\mathcal{F}_E}\) of the graph algebra C*(E). By describing a partial homeomorphism of \({\widehat{\mathcal{F}_E}}\) dual to \({(\mathcal{V, H})}\) we find the fundamental structure theorems for C*(E), such as Cuntz–Krieger uniqueness theorem, as results concerning reversible noncommutative dynamics on \({\mathcal{F}_E}\) . We also provide a new approach to calculation of K-theory of C*(E) using only an induced partial automorphism of \({K_0(\mathcal{F}_E)}\) and the six-term exact sequence.

Article PDF

Download to read the full article text

Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  1. Abadie B., Eilers S., Exel R.: Morita equivalence for crossed products by Hilbert C*-bimodules. Trans. Am. Math. Soc. 350(8), 3043–3054 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  2. Antonevich A.B., Bakhtin V.I., Lebedev A.V.: Crossed product of C*-algebra by an endomorphism, coefficient algebras and transfer operators. Math. Sb. 202(9), 1253–1283 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  3. Ara, P., Exel, R., Katsura, T.: Dynamical systems of type (m,n) and their C*-algebras. Ergod. Theory Dyn. Syst. arXiv:1109.4093

  4. Bates T., Pask D., Raeburn I., Szymański W.: The C*-algebras of row-finite graphs. N. Y. J. Math. 6, 307–324 (2000)

    MATH  Google Scholar 

  5. Bratteli O.: Inductive limits of finite dimensional C*-algebras. Trans. Am. Math. Soc. 171, 195–234 (1972)

    MathSciNet  MATH  Google Scholar 

  6. Brown L.G., Mingo J., Shen N.: Quasi-multipliers and embeddings of Hilbert C*-modules. Canad. J. Math. 71, 1150–1174 (1994)

    Article  MathSciNet  Google Scholar 

  7. Brownlowe N., Raeburn I., Vittadello S.: Exel’s crossed product for non-unital C*-algebras. Math. Proc. Camb. Philos. Soc. 149, 423–444 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. Connes A.: Noncommutative Geometry. Academic Press, San Diego (1994)

    MATH  Google Scholar 

  9. Cuntz J.: Simple C*-algebras generated by isometries. Commun. Math. Phys. 57(2), 173–185 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  10. Cuntz J., Krieger W.: A class of C*-algebras and topological Markov chains. Invent. Math. 56, 256–268 (1980)

    Article  MathSciNet  Google Scholar 

  11. Exel R.: A new look at the crossed-product of a C*-algebra by an endomorphism. Ergod. Theory Dyn. Syst. 23, 1733–1750 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  12. Exel R.: Interactions. J. Funct. Anal. 244, 26–62 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  13. Exel R.: A new look at the crossed-product of a C*-algebra by a semigroup of endomorphisms.. Ergod. Theory Dyn. Syst. 28, 749–789 (2008)

    MathSciNet  MATH  Google Scholar 

  14. Exel, R.: Interactions and dynamical systems of type (n, m)—a case study. arXiv:1212.5963

  15. Exel R., Laca M.: Cuntz–Krieger algebras for infinite matrices. J. Reine Angew. Math. 512, 119–172 (1999)

    MathSciNet  MATH  Google Scholar 

  16. Exel R., Laca M.: The K-Theory of Cuntz–Krieger algebras for infinite matrices. K-Theory 19, 251–268 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  17. Exel R., Renault J.: Semigroups of local homeomorphisms and interaction groups. Ergod. Theory Dyn. Syst. 27, 1737–1771 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  18. Exel R., Vershik A.: C*-algebras of irreversible dynamical systems. Can. J. Math. 58, 39–63 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  19. an Huef A., Raeburn I.: Stacey crossed products associated to Exel systems. Integr. Equ. Oper. Theory 72, 537–561 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  20. Jeong Ja A., Hyun Park Gi: Topological entropy for the canonical completely positive maps on graph C*-algebras. Bull. Aust. Math. Soc. 70(1), 101–116 (2004)

    Article  MATH  Google Scholar 

  21. Kajiwara, T., Watatani, Y.: Ideals of the core of C*-algebras associated with self-similar maps. arXiv:1306.1878

  22. Katsura T.: On C*-algebras associated with C*-correspondences. J. Funct. Anal. 217(2), 366–401 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  23. Kwaśniewski B.K.: On transfer operators for C*-dynamical systems. Rocky J. Math. 42(3), 919–938 (2012)

    Article  MATH  Google Scholar 

  24. Kwaśniewski B.K.: C*-algebras associated with reversible extensions of logistic maps. Mat. Sb. 203(10), 1448–1489 (2012)

    Article  MATH  Google Scholar 

  25. Kwaśniewski, B.K.: Topological freeness for Hilbert bimodules. Isr. J. Math. doi:10.1007/s11856-013-0057-0

  26. Kwaśniewski, B.K.: Exel’s crossed products and crossed products by completely positive maps. arXiv:1404.4929

  27. Kwaśniewski, B.K.: Extensions of C*-dynamical systems to systems with complete transfer operators. arXiv:math/0703800

  28. Kwaśniewski, B.K.: Crossed product of a C*-algebra by a semigroup of interactions. Demonstr. Math. 47(2) (2014)

  29. Kumjian A., Pask D., Raeburn I.: Cuntz–Krieger algebras of directed graphs.. Pac. J. Math. 184, 161–174 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  30. Kumjian A., Pask D., Raeburn I., Renault J.: Graphs, groupoids and Cuntz–Krieger algebras. J. Funct. Anal. 144, 505–541 (1997)

    Article  MathSciNet  Google Scholar 

  31. Laca M., Spielberg J.: Purely infinite C*-algebras from boundary actions of discrete groups. J. Reine. Angew. Math. 480, 125–139 (1996)

    MathSciNet  MATH  Google Scholar 

  32. O’Donovan D.P.: Weighted shifts and covariance algebras. Trans. Am. Math. Soc. 208, 1–25 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  33. Olesen D., Pedersen G.K.: Applications of the Connes spectrum to C*-dynamical systems II. J. Funct. Anal. 36, 18–32 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  34. Olesen D., Pedersen G.K.: Applications of the Connes spectrum to C*-dynamical systems III. J. Funct. Anal. 45, 357–390 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  35. Paschke W.L.: The crossed product of a C*-algebra by an endomorphism.. Proc. Am. Math. Soc. 80, 113–118 (1980)

    MathSciNet  MATH  Google Scholar 

  36. Paschke W.L.: K-theory for actions of the circle group on C*-algebras. J. Oper. Theory 6, 125–133 (1981)

    MathSciNet  MATH  Google Scholar 

  37. Pedersen G.K.: C*-algebras and their automorphism groups. Academic Press, London (1979)

    Google Scholar 

  38. Pimsner M.V.: A class of C*-algebras generalizing both Cuntz–Krieger algebras and crossed products by \({\mathbb{Z}}\) . Fields Inst. Commun. 12, 189–212 (1997)

    MathSciNet  Google Scholar 

  39. Raeburn, I.: Graph Algebras. BMS Regional Conference Series in Mathematics, vol. 103. American Mathematical Society, Providence (2005)

  40. Raeburn I., Szymański W.: Cuntz–Krieger algebras of infinite graphs and matrices. Trans. Am. Math. Soc. 356, 39–59 (2004)

    Article  MATH  Google Scholar 

  41. Raeburn, I., Williams, D.P.: Morita Equivalence and Continuous-Trace C*-Algebras. American Mathematical Society, Providence (1998)

  42. Rørdam M.: Classification of certain infinite simple C*-algebras. J. Funct. Anal. 131, 415–458 (1995)

    Article  MathSciNet  Google Scholar 

  43. Schweizer J.: Dilations of C*-correspondences and the simplicity of Cuntz–Pimsner algebras. J. Funct. Anal. 180, 404–425 (2001)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Institute of Mathematics, Polish Academy of Science, ul. Śniadeckich 8, 00-956, Warsaw, Poland

    B. K. Kwaśniewski

  2. Institute of Mathematics, University of Bialystok, ul. Akademicka 2, 15-267, Bialystok, Poland

    B. K. Kwaśniewski

Authors
  1. B. K. Kwaśniewski
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to B. K. Kwaśniewski.

Additional information

This work was in part supported by Polish National Science Centre Grant Number DEC-2011/01/D/ST1/04112.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kwaśniewski, B.K. Crossed Products for Interactions and Graph Algebras. Integr. Equ. Oper. Theory 80, 415–451 (2014). https://doi.org/10.1007/s00020-014-2166-5

Download citation

  • Received: 19 November 2013

  • Revised: 15 May 2014

  • Published: 04 June 2014

  • Issue Date: November 2014

  • DOI: https://doi.org/10.1007/s00020-014-2166-5

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Mathematics Subject Classification (2010)

  • Primary 46L55
  • Secondary 46L80

Keywords

  • Interaction
  • graph algebra
  • endomorphism
  • topological freeness
  • crossed product
  • Hilbert bimodule
  • K-theory
  • Pimsner–Voiculescu exact sequence
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

search

Navigation

  • Find a journal
  • Publish with us

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our imprints

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support

Not affiliated

Springer Nature

© 2023 Springer Nature