Skip to main content
Log in

A Resolvent Approach to the Real Quantum Plane

  • Published:
Integral Equations and Operator Theory Aims and scope Submit manuscript

Abstract

Let q ≠ ± 1 be a complex number of modulus one. This paper deals with the operator relation AB = qBA for self-adjoint operators A and B on a Hilbert space. Two classes of well-behaved representations of this relation are studied in detail and characterized by resolvent equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Balakrisnan A.V.: Fractional powers of closed operators and the semigroup generated by them. Pac. J. Math. 10, 419–437 (1960)

    Article  Google Scholar 

  2. Brooke J.A., Busch P., Pearson D.B.: Commutativity up to a factor of bounded operators in complex Hilbert space. R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci. 458, 109–118 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  3. Cho M., Harte R., Ota Sch.: Commutativity to within scalars on Banach space. Funct. Anal. Approx. 3, 69–77 (2011)

    MATH  MathSciNet  Google Scholar 

  4. Gradshteyn I.S., Ryzhik I.M.: Table of Integrals, Series and Products, 7th edn. Academic Press, New York (2007)

    MATH  Google Scholar 

  5. Martinez Carracedo C., Sanz Alix M.: The Theory of Fractional Powers of Operators. North-Holland, Amsterdam (2001)

    MATH  Google Scholar 

  6. Mortad M.H.: Commutativity up to a factor: more results and the unbounded case. Z. Anal. Anwend. 29, 303–307 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  7. Klimyk A., Schmüdgen K.: Quantum Qroups and Their Representations. Springer, Berlin (1997)

    Book  Google Scholar 

  8. Markushevich, A.V.: The theory of analytic functions, vol. II. (Russian)

  9. Ostrovskyi, V., Samoilenko, Yu.: Introduction to the Theory of Representations of Finitely Presented *-Algebras, Gordon and Breach, London (1999)

  10. Ota S., Szafraniec F.H.: Notes on q-normal operators. Studia Math. 165, 295–301 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  11. Schmüdgen K.: Operator representations of \({\bf{R}^2_q}\). Publ. RIMS Kyoto Univ. 29, 1030–1061 (1992)

    Google Scholar 

  12. Schmüdgen K.: Integrable representations of \({\mathbb{R}^2_q}\), \({X_{q,\gamma}}\), and \({SL_q(2,\mathbb{R})}\). Commun. Math. Phys. 159, 27–237 (1994)

    Article  Google Scholar 

  13. Schmüdgen K.: The quantum quarter plane and the real quantum plane. Int. J. Math. 13, 279–321 (2002)

    Article  MATH  Google Scholar 

  14. Schmüdgen, K.: Unbounded Self-adjoint Operators on Hilbert space. In: Graduate Texts in Mathematics, vol. 265. Springer, Dordrecht (2012)

  15. Woronowicz S.L., Zakrzewski S.: Quantum ‘ax + b’ group. Rev. Math. Phys. 14, 797–828 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  16. Yang J., Du H.-P.: A note on commutativity up to a factor of bounded operators. Proc. Amer. Math. soc. 132, 1713–1720 (2004)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Konrad Schmüdgen.

Additional information

Dedicated to Professor Yurii S. Samoilenko on the occasion of his 70th birthday

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ostrovskyi, V., Schmüdgen, K. A Resolvent Approach to the Real Quantum Plane. Integr. Equ. Oper. Theory 79, 451–476 (2014). https://doi.org/10.1007/s00020-014-2165-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00020-014-2165-6

Mathematics Subject Classification (2010)

Keywords

Navigation