Skip to main content
Log in

Spectra of Periodic Schrödinger Operators on the Degenerate Zigzag Nanotube with δ Type Vertex Conditions

  • Published:
Integral Equations and Operator Theory Aims and scope Submit manuscript

Abstract

In this paper, we consider the Schrödinger operators with a periodic potential and the δ type vertex conditions on a metric graph, which is called the degenerate zigzag nanotube, and discuss those spectrum. We demonstrate that the spectrum has the band structure. Moreover, we give the asymptotics of the band edges.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Albeverio S., Gesztesy F., Høegh-Krohn R., Holden H.: Solvable Models in Quantum Mechanics, 2nd ed., With an Appendix by Pavel Exner. AMS Chelsea publishing, Rhode Island (2005)

    Google Scholar 

  2. Bardhan, G., Kuchment P.: Introduction to Quantum Graphs. AMS Providence, RL (2012)

  3. Carlson R.: Hill’s equation for a homogeneous tree. Electron. J. Differ. Equ. 23, 1–30 (1997)

    Google Scholar 

  4. Cheon T., Exner P., Turek O.: Spectral filtering in quantum Y-junction. J. Phys. Soc. Jpn. 78, 124004 (2009)

    Article  Google Scholar 

  5. Do N.T., Kuchment P.: Quantum graph spectra of a graphyne structure. Nanoscale Syst. 2, 107–123 (2013)

    MATH  Google Scholar 

  6. Duclos, P., Exner, P., Ondřej, Turek.: On the spectrum of a bent chain graph. J. Phys. A: Math. Theor. 41, 415206 (18pp) (2008)

  7. Garnett J., Trubowitz E.: Gaps and bands of one dimensional periodic Schrödinger operators. Comment. Math. Helv. 59, 258–312 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  8. Gesztesy F., Holden H., Kirsch W.: On energy gaps in a new type of analytically solvable model in quantum mechanics. J. Math. Anal. Appl. 134, 9–29 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  9. Gérard C., Nier F.: The mourre theory for analytically fibered operators. J. Funct. Anal. 152(1), 02–219 (1998)

    Article  Google Scholar 

  10. Guldi, M., Martín, N.: Carbon Nanotubes and Related Structures: Synthesis, Characterization, Functionalization, and Applications. Wiley-VCH, New York (2010)

  11. Iantchenko A., Korotyaev E.: Schrödinger operators on the zigzag half-nanotube in magnetic field. Math. Model. Nat. Phenom. 5(4), 175–197 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  12. Kargaev P., Korotyaev E.: Effective masses and conformal mappings. Commun. Math. Phys. 169, 597–625 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  13. Korotyaev E.: Effective masses for zigzag nanotubes in magnetic fields. Lett. Math. Phys. 83(1), 83–95 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  14. Korotyaev E., Lobanov I.: Schrödinger operators on zigzag nanotubes. Ann. Henri Poincaré 8, 1151–1176 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  15. Kostrykin V., Schrader R.: Kirchhoff’s rule for quantum wires. J. Phys. A: Math. Gen. 32, 595–630 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  16. Kronig R., Penney W.: Quantum mechanics in crystal lattices. Proc. R. Soc. Lond. 130, 499–513 (1931)

    Article  Google Scholar 

  17. Kuchment P.: Quantum graphs I. Some basic structures. Waves Random Media 14, S107–S128 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  18. Kuchment P.: Quantum graphs II. Some spectral properties of quantum and combinatorial graphs. J. Phys. A 38(22), 4887–4900 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  19. Kuchment P., Post O.: On the spectra of carbon nanostructures. Commun. Math. Phys. 275, 805–826 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  20. Magnus W., Winkler S.: Hill’s Equation. Wiley, New York (1966)

    MATH  Google Scholar 

  21. Pankrashkin K.: Spectra of Schrödinger operators on equilateral quantum graphs. Lett. Math. Phys. 77(2), 139–154 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  22. Pankrashkin, K.: Locatization Effects in a Periodic Quantum Graph with Magnetic Field and Spin-orbit Interaction. J. Math. Phys. 47(11), 112105 17pp (2006)

  23. Poschel J., Trubowitz E.: Inverse Spectral Theory. Academic Press, Orlando (1987)

    Google Scholar 

  24. Reed M., Simon B.: Methods of Modern Mathematical Physics, IV. Analysis of operators. Academic Press, New York (1978)

    MATH  Google Scholar 

  25. Titchmarsh E.: The Theory of Functions, Sec. ed. University Press, London (1975)

    Google Scholar 

  26. Yoshitomi K.: Spectral gaps of the one-dimensional Schrödinger operators with periodic point interactions. Hokkaido Math. J. 35(2), 65–378 (2006)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroaki Niikuni.

Additional information

This work is supported by Grant-in-Aid for Young Scientists B (2580085), Japan Society for Promotion of Science.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Niikuni, H. Spectra of Periodic Schrödinger Operators on the Degenerate Zigzag Nanotube with δ Type Vertex Conditions. Integr. Equ. Oper. Theory 79, 477–505 (2014). https://doi.org/10.1007/s00020-014-2162-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00020-014-2162-9

Mathematics Subject Classification (2010)

Keywords

Navigation