Bessel-Type Operators with an Inner Singularity

Abstract

We consider a Bessel-type differential expression on [0, a], a > 1, with the singularity at the inner point x = 1, see (1.2) below. This singularity is in the limit point case from both sides. Therefore in a Hilbert space treatment in L 2(0, a), e.g. for Dirichlet boundary conditions at x = 0 and xa, a unique self-adjoint operator is associated with this differential expression. However, in papers by J. F. van Diejen and A. Tip, Yu. Shondin, A. Dijksma, P. Kurasov and others, in more general situations, self-adjoint operators in some Pontryagin space were connected with this kind of singular equations; for (1.2) this connection appeared also in the study of a continuation problem for a hermitian function by H. Langer, M. Langer and Z. Sasvári. In the present paper we give an explicit construction of this Pontryagin space for the Bessel-type equation (1.2) and a description of the self-adjoint operators which can be associated with it.

This is a preview of subscription content, access via your institution.

References

  1. 1

    Azizov, Ya.T., Iokhvidov, I.S.: Linear Operators in Spaces with an Indefinite Metric. Wiley, Chichester (1989)

  2. 2

    Albeverio, S., Kurasov, P.: Singular Perturbations of Differential Operators. Solvable Schrödinger Type Operators. London Mathematical Society Lecture Note Series, vol. 271. Cambridge University Press, Cambridge (2000)

  3. 3

    Askey R.: Grünbaum’s inequality for Bessel functions. J. Math. Anal. Appl. 41, 122–124 (1973)

    MathSciNet  MATH  Article  Google Scholar 

  4. 4

    Behrndt J., Langer M.: On the adjoint of a symmetric operator. J. Lond. Math. Soc. (2) 82, 563–580 (2010)

    MathSciNet  MATH  Article  Google Scholar 

  5. 5

    Behrndt, J., Langer, M.: Elliptic operators, Dirichlet-to-Neumann maps and quasi boundary triples. In: Operator Methods for Boundary Value Problems, London Math. Soc. Lecture Note Series, vol. 404, pp. 121–160, Cambridge University Press, Cambridge (2012)

  6. 6

    Derkach V.A.: On generalized resolvents of Hermitian relations in Krein spaces. J. Math. Sci. (New York) 97, 4420–4460 (1999)

    MathSciNet  MATH  Article  Google Scholar 

  7. 7

    Derkach V.A., Hassi S., Malamud M.M., de Snoo H.S.V.: Generalized resolvents of symmetric operators and admissibility. Methods Funct. Anal. Topol. 6, 24–55 (2000)

    MathSciNet  MATH  Google Scholar 

  8. 8

    Derkach V.A., Malamud M.M.: Generalized resolvents and the boundary value problems for Hermitian operators with gaps. J. Funct. Anal. 95, 1–95 (1991)

    MathSciNet  MATH  Article  Google Scholar 

  9. 9

    van Diejen J.F., Tip A.: Scattering from generalized point interactions using selfadjoint extensions in Pontryagin spaces. J. Math. Phys. 32, 630–641 (1991)

    MathSciNet  MATH  Article  Google Scholar 

  10. 10

    Dijksma A., Langer H., Shondin Yu.: Rank one perturbations at infinite coupling in Pontryagin spaces. J. Funct. Anal. 209, 206–246 (2004)

    MathSciNet  MATH  Article  Google Scholar 

  11. 11

    Dijksma, A., Langer, H., Shondin, Yu., Zeinstra, C.: Self-adjoint operators with inner singularities and Pontryagin spaces. In: Operator Theory and Related Topics, Vol. II (Odessa, 1997), Oper. Theory Adv. Appl., vol. 118, pp. 105–175, Birkhäuser, Basel (2000)

  12. 12

    Dijksma A., Shondin Yu.: Singular point-like perturbations of the Bessel operator in a Pontryagin space. J. Differ. Equ. 164, 49–91 (2000)

    MathSciNet  MATH  Article  Google Scholar 

  13. 13

    Everitt W.N., Zettl A.: Sturm–Liouville differential operators in direct sum spaces. Rocky Mt. J. Math. 16, 497–516 (1986)

    MathSciNet  MATH  Article  Google Scholar 

  14. 14

    Fulton C.: Titchmarsh–Weyl m-functions for second-order Sturm–Liouville problems with two singular endpoints. Math. Nachr. 281, 1418–1475 (2008)

    MathSciNet  MATH  Article  Google Scholar 

  15. 15

    Fulton C., Langer H.: Sturm–Liouville operators with singularities and generalized Nevanlinna functions. Complex Anal. Oper. Theory 4, 179–243 (2010)

    MathSciNet  MATH  Article  Google Scholar 

  16. 16

    Fulton, C., Langer, H., Luger, A.: Mark Krein’s method of directing functionals and singular potentials. Math. Nachr. 285, 1791–1798 (2012)

    Google Scholar 

  17. 17

    Gelf’and, I.M., Shilov, G.E.: Generalized Functions, vol. 1. Properties and Operations. Academic Press, New York (1964)

  18. 18

    Gesztesy F., Zinchenko M.: On spectral theory for Schrödinger operators with strongly singular potentials. Math. Nachr. 279, 1041–1082 (2006)

    MathSciNet  MATH  Article  Google Scholar 

  19. 19

    Iohvidov, I.S., Kreĭn, M.G., Langer, H: Introduction to the Spectral Theory of Operators in Spaces with an Indefinite Metric. Mathematical Research, vol. 9. Akademie-Verlag, Berlin (1982)

  20. 20

    Jahnke, E., Emde, F., Lösch, F.: Tables of Higher Functions, 6th edn (revised by Friedrich Lösch). McGraw-Hill, New York; B. G. Teubner Verlagsgesellschaft, Stuttgart (1960)

  21. 21

    Jonas, P., Langer, H., Textorius, B.: Models and unitary equivalence of cyclic selfadjoint operators in Pontrjagin spaces. In: Operator Theory and Complex Analysis (Sapporo, 1991), Oper. Theory Adv. Appl., vol. 59, pp. 252–284, Birkhäuser, Basel (1992)

  22. 22

    Kaltenbäck M., Woracek H.: Pontryagin spaces of entire functions IV. Acta Sci. Math. (Szeged) 72, 709–835 (2006)

    MathSciNet  MATH  Google Scholar 

  23. 23

    Kostenko A., Teschl G.: On the singular Weyl–Titchmarsh function of perturbed spherical Schrödinger operators. J. Differ. Equ. 250, 3701–3739 (2011)

    MathSciNet  MATH  Article  Google Scholar 

  24. 24

    Kreĭn M.G., Langer H.: Über die Q-Funktion eines π-hermiteschen Operators im Raume Πκ. (German) Acta Sci Math. (Szeged) 34, 191–230 (1973)

    MATH  Google Scholar 

  25. 25

    Kreĭn M.G., Langer H.: Some propositions on analytic matrix functions related to the theory of operators in the space Πκ. Acta Sci. Math. (Szeged) 43, 181–205 (1981)

    MathSciNet  MATH  Google Scholar 

  26. 26

    Kreĭn M.G., Langer H.: On some continuation problems which are closely related to the theory of operators in spaces Πκ. IV. Continuous analogues of orthogonal polynomials on the unit circle with respect to an indefinite weight and related continuation problems for some classes of functions. J. Oper. Theory 13, 299–417 (1985)

    MATH  Google Scholar 

  27. 27

    Langer H.: Spektralfunktionen einer Klasse von Differentialoperatoren zweiter Ordnung mit nichtlinearem Eigenwertparameter. Ann. Acad. Sci. Fenn. Ser. A I Math. 2, 269–301 (1976)

    MathSciNet  MATH  Google Scholar 

  28. 28

    Langer H., Langer M., Sasvári Z.: Continuations of Hermitian indefinite functions and corresponding canonical systems: an example. Methods Funct. Anal. Topol. 10, 39–53 (2004)

    MATH  Google Scholar 

  29. 29

    Langer M., Woracek H.: A function space model for canonical systems with an inner singularity. Acta Sci. Math. (Szeged) 77, 101–165 (2011)

    MathSciNet  MATH  Google Scholar 

  30. 30

    Neuman, E.: Inequalities involving Bessel functions of the first kind. JIPAM. J. Inequal. Pure Appl. Math. 5(4), Article 94 (2004) (electronic)

  31. 31

    Olver, F.W.J., Lozier, D.W., Boisvert, R.F., Clark, C.W., US Department of Commerce, National Institute of Standards and Technology, Washington, DC. (eds.) NIST Handbook of Mathematical Functions. Cambridge University Press, Cambridge (2010) http://dlmf.nist.gov)

  32. 32

    Rovnyak, J., Sakhnovich, L.A.: Inverse problems for canonical differential equations with singularities. In: Recent Advances in Matrix and Operator Theory, Oper. Theory Adv. Appl., vol. 179, pp. 257–288, Birkhäuser, Basel (2008)

  33. 33

    Shondin, Yu.G.: Quantum mechanical models in \({\mathbf{R}^n}\) connected with extensions of the energy operator in a Pontryagin space. (Russian) Teoret. Mat. Fiz. 74, 331–344 (1988) (English translation in Theoret. Math. Phys. 74, 220–230 (1988))

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Matthias Langer.

Additional information

Heinz Langer thanks the Leverhulme Trust for awarding him a Leverhulme Visiting Professorship. Without this substantial support the paper could never have been written. He also thanks the School of Mathematics of the University of Wales at Cardiff, especially Professors Malcolm Brown and Marco Marletta, for their hospitality. All three authors are grateful to the Isaac Newton Institute for Mathematical Sciences in Cambridge for offering them excellent working conditions. Last but not least, Malcolm Brown and Heinz Langer thank the University of Strathclyde for their hospitality.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Brown, B.M., Langer, H. & Langer, M. Bessel-Type Operators with an Inner Singularity. Integr. Equ. Oper. Theory 75, 257–300 (2013). https://doi.org/10.1007/s00020-012-2023-3

Download citation

Mathematics Subject Classification(2010)

  • Primary 34B30
  • 34B20
  • Secondary 47E05
  • 34L40
  • 47B50
  • 46C20

Keywords

  • Bessel equation
  • singular potential
  • symmetric operators in Pontryagin spaces
  • self-adjoint extensions
  • Weyl function
  • generalized Nevanlinna function