Skip to main content
Log in

Maximal Regularity for Perturbed Integral Equations on the Line

  • Published:
Integral Equations and Operator Theory Aims and scope Submit manuscript

Abstract

We characterize the existence and uniqueness of solutions for a perturbed linear integral equation with infinite delay in Hölder spaces. The method is based on the theory of operator-valued Fourier multipliers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Amann H.: Linear and Quasilinear Parabolic Problems. Volume I: Abstract Linear Theory Monographs in Mathematics, vol 89. Birkhäuser, Basel (1995)

    Google Scholar 

  2. Amann H.: Operator-valued Fourier multipliers. Vector-valued Besov spaces and applications. Math. Nachr. 186, 5–56 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  3. Arendt W., Batty C., Bu S.: Fourier multipliers for Hölder continuous functions and maximal regularity. Stud. Math. 160, 23–51 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  4. Arendt W., Bu S.: The operator-valued Marcinkiewicz multiplier theorem and maximal regularity. Math. Z. 240, 311–343 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  5. Arendt W., Bu S.: Operator-valued Fourier multiplier on periodic Besov spaces and applications. Proc. Edin. Math. Soc. 47(2), 15–33 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  6. Arendt W., Batty C., Hieber M., Neubrander F.: Vector-valued Laplace transforms and Cauchy problems. Monographs in Mathematics, vol. 96. Birkhäuser, Basel (2001)

    Google Scholar 

  7. Bu S.: Maximal regularity for integral equations in Banach spaces. Taiwan. J. Math. 15(1), 229–240 (2011)

    MathSciNet  MATH  Google Scholar 

  8. Bu S.: Hölder continuous solutions for second order integro-differential equations in Banach spaces. Acta Math. Sci. 31B(3), 765–777 (2011)

    Article  MathSciNet  Google Scholar 

  9. Bu S., Kim J.: Operator-valued Fourier multipliers on periodic Triebel spaces. Acta Math. Sin. (Engl. Ser.) 21, 1049–1056 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  10. Chill R., Srivastava S.: L p-Maximal regularity for second order Cauchy problems. Math. Z. 251(4), 751–781 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  11. Cuevas, C., Lizama, C.: Well posedness for a class of flexible structure in Holder spaces. Math. Probl. Eng. 2009 (Article ID 358329, 13 pages). doi:10.1155/2009/358329

  12. Denk, R., Hieber, M., Prüss, J.: R-boundedness, Fourier multipliers and problems of elliptic and parabolic type. Mem. Amer. Math. Soc. 166(788), (2003)

  13. Favini, A., Yagi, A.: Degenerate differential equations in Banach spaces. Pure Appl. Math., vol. 215. Dekker, New York (1999)

  14. Haase M.: The functional calculus for sectorial operators. In: Operator Theory: Advances and Applications, vol. 169. Birkäuser Verlag, Basel (2006)

    Book  Google Scholar 

  15. Keyantuo V., Lizama C.: Hölder continuous solutions for integro-differential equations and maximal regularity. J. Differ. Equ. 230, 634–660 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  16. Lizama C., Poblete V.: Maximal regularity for perturbed integral equations on periodic Lebesgue spaces. J. Math. Anal. Appl. 348(2), 775–786 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  17. Martinez C., Sanz M.: The theory of fractional powers of operators. In: North Holland Mathematical Studies, vol. 187. Elsevier, Amsterdam (2001)

    Google Scholar 

  18. Poblete V.: Maximal regularity of second-order equations with delay. J. Differ. Equ. 246, 261–276 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  19. Prüss J.: Evolutionary Integral Equations and Applications. Monographs in Mathematics, vol. 87. Birkhäuser Verlag, Basel (1993)

    Book  Google Scholar 

  20. Pugliese, A.: Some questions on the integrodifferential equation u′ =  AK * uBM * u,. In: Favini, A., Obrecht, E., Venni A. (eds.) Differential Equations in Banach Spaces. Lecture Notes in Mathematics, vol. 1223, pp. 227-242. Springer, New York (1986)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Lizama.

Additional information

The first author is partially supported by FONDECYT 1100485.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lizama, C., Ponce, R. Maximal Regularity for Perturbed Integral Equations on the Line. Integr. Equ. Oper. Theory 74, 513–526 (2012). https://doi.org/10.1007/s00020-012-2010-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00020-012-2010-8

Mathematics Subject Classification (2010)

Keywords

Navigation