Abstract
Let \({\mathcal{A}_{\lambda}^2(\mathbb{B}^n)}\) denote the standard weighted Bergman space over the unit ball \({\mathbb{B}^n}\) in \({\mathbb{C}^n}\) . New classes of commutative Banach algebras \({\mathcal{T}(\lambda)}\) which are generated by Toeplitz operators on \({\mathcal{A}_{\lambda}^2(\mathbb{B}^n)}\) have been recently discovered in Vasilevski (Integr Equ Oper Theory 66(1):141–152, 2010). These algebras are induced by the action of the quasi-elliptic group of biholomorphisms of \({\mathbb{B}^n}\) . In the present paper we analyze in detail the internal structure of such an algebra in the lowest dimensional case n = 2. We explicitly describe the maximal ideal space and the Gelfand map of \({\mathcal{T}(\lambda)}\) . Since \({\mathcal{T}(\lambda)}\) is not invariant under the *-operation of \({\mathcal{L}(\mathcal{A}_{\lambda}^2(\mathbb{B}^n))}\) its inverse closedness is not obvious and is proved. We remark that the algebra \({\mathcal{T}(\lambda)}\) is not semi-simple and we derive its radical. Several applications of our results are given and, in particular, we conclude that the essential spectrum of elements in \({\mathcal{T}(\lambda)}\) is always connected.
This is a preview of subscription content, access via your institution.
References
Bauer W., Vasilevski N.: Banach algebras of commuting Toeplitz operators on the ball via the quasi-hyperbolic group. Birkhäuser Oper. Adv. Appl. 218, 155–175 (2011)
Bauer W., Vasilevski N.: Commutative Toeplitz Banach algebras on the ball and quasi-nilpotent group action. Integr. Equ. Oper. Theory 72, 223–240 (2012)
Cordes H.O.: On a class of C*-algebras. Math. Ann. 170, 283–313 (1967)
Dash A.T.: Joint spectra. Studia Math. T. XLV 225–237 (1973)
Dunford N., Schwartz J.T.: Linear Operators, vol. II. Interscience Publishers, New York (1963)
Gamelin T.W.: Uniform Algebras. Prentice-Hall, Inc., Englewood Cliffs (1969)
Grudsky S., Quiroga-Barranco R., Vasilevski N.: Commutative C*-algebras of Toeplitz operators and quantization on the unit disk. J. Funct. Anal. 234(1), 1–44 (2006)
Larsen R.: Banach Algebras. Marcel Dekker Inc., New York (1973)
Le T.: Finite-rank products of Toeplitz operators in several complex variables. Integr. Equ. Oper. Theory 63(4), 547–555 (2009)
Luecking D.: Finite rank Toeplitz operators on the Bergman space. Proc. Am. Math. Soc. 136(5), 1717–1723 (2008)
Quiroga-Barranco R., Vasilevski N.: Commutative C*-algebras of Toeplitz operators on the unit ball. I. Bargmann-type transforms and spectral representations of Toeplitz operators. Integr. Equ. Oper. Theory 59(3), 379–419 (2007)
Quiroga-Barranco R., Vasilevski N.: Commutative C*-algebras of Toeplitz operators on the unit ball. II. Geometry of the level set of symbols. Integr. Equ. Oper. Theory 60(1), 89–132 (2008)
Rabinovich V., Roch S., Silbermann B.: Limit Operators and Their Applications in Operator Theory. Birkhäuser, Basel (2004)
Rickart C.A.: Banach algebras with an adjoint operation. Ann. Math. 4, 528–550 (1946)
Ryan R.A.: Introduction to Tensor Products of Banach Spaces. Springer, London (2002)
Vasilevski N.L.: On Bergman–Toeplitz operators with commutative symbol algebras. Integr. Equ. Oper. Theory 34(1), 107–126 (1999)
Vasilevski N.L.: Toeplitz operators on the Bergman spaces: inside- the-domain effects. Contemp. Math. 289, 79–146 (2001)
Vasilevski N.L.: Bergman space structure, commutative algebras of Toeplitz operators and hyperbolic geometry. Integr. Equ. Oper. Theory 46, 235–251 (2003)
Vasilevski N.L.: Quasi-radial quasi-homogeneous symbols and commutative Banach algebras of Toeplitz operators. Integr. Equ. Oper. Theory 66(1), 141–152 (2010)
Vasilevski N.L.: Parabolic quasi-radial quasi-homogeneous symbols and commutative algebras of Toeplitz operators. Birkhäuser Oper. Theory Adv. Appl. 202, 553–568 (2010)
Vasilevski, N.L., Grudsky, S.M., Maximenko, E.A.: Toeplitz operators on the Bergman space generated by radial symbols and slowly oscillating sequences. In: Proceedings of the Scientific School of I. B. Simonenko, Rostov-on-Don, Russia, pp. 38–43 (in Russian) (2010)
Venugopalkrishna U.: Fredholm operators associated with strongly pseudoconvex domains in C n. J. Funct. Anal. 9, 349–373 (1972)
Zhou Z.-H., Dong X.-T.: Algebraic properties of Toeplitz operators with radial symbols on the Bergman space of the unit ball. Integr. Equ. Oper. Theory 64, 137–154 (2009)
Zelazko W.: Continuous characters and joint topological spectrum. Control Cybern. 36(3), 859–864 (2007)
Author information
Authors and Affiliations
Corresponding author
Additional information
W. Bauer has been supported by an “Emmy-Noether scholarship” of DFG (Deutsche Forschungsgemeinschaft). N. Vasilevski has been partially supported by CONACYT Project 102800, México.
Rights and permissions
About this article
Cite this article
Bauer, W., Vasilevski, N. On The Structure of A Commutative Banach Algebra Generated By Toeplitz Operators With Quasi-Radial Quasi-Homogeneous Symbols. Integr. Equ. Oper. Theory 74, 199–231 (2012). https://doi.org/10.1007/s00020-012-1987-3
Received:
Revised:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00020-012-1987-3
Mathematics Subject Classification (2000)
- Primary 47B35
- Secondary 47L80
- 32A36
Keywords
- Toeplitz operator
- weighted Bergman space
- commutativeBanach algebra
- Gelfand theory
- radical
- quasi-radial
- quasi-homogeneous