Skip to main content

On The Structure of A Commutative Banach Algebra Generated By Toeplitz Operators With Quasi-Radial Quasi-Homogeneous Symbols

Abstract

Let \({\mathcal{A}_{\lambda}^2(\mathbb{B}^n)}\) denote the standard weighted Bergman space over the unit ball \({\mathbb{B}^n}\) in \({\mathbb{C}^n}\) . New classes of commutative Banach algebras \({\mathcal{T}(\lambda)}\) which are generated by Toeplitz operators on \({\mathcal{A}_{\lambda}^2(\mathbb{B}^n)}\) have been recently discovered in Vasilevski (Integr Equ Oper Theory 66(1):141–152, 2010). These algebras are induced by the action of the quasi-elliptic group of biholomorphisms of \({\mathbb{B}^n}\) . In the present paper we analyze in detail the internal structure of such an algebra in the lowest dimensional case n = 2. We explicitly describe the maximal ideal space and the Gelfand map of \({\mathcal{T}(\lambda)}\) . Since \({\mathcal{T}(\lambda)}\) is not invariant under the *-operation of \({\mathcal{L}(\mathcal{A}_{\lambda}^2(\mathbb{B}^n))}\) its inverse closedness is not obvious and is proved. We remark that the algebra \({\mathcal{T}(\lambda)}\) is not semi-simple and we derive its radical. Several applications of our results are given and, in particular, we conclude that the essential spectrum of elements in \({\mathcal{T}(\lambda)}\) is always connected.

This is a preview of subscription content, access via your institution.

References

  1. Bauer W., Vasilevski N.: Banach algebras of commuting Toeplitz operators on the ball via the quasi-hyperbolic group. Birkhäuser Oper. Adv. Appl. 218, 155–175 (2011)

    MathSciNet  Google Scholar 

  2. Bauer W., Vasilevski N.: Commutative Toeplitz Banach algebras on the ball and quasi-nilpotent group action. Integr. Equ. Oper. Theory 72, 223–240 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  3. Cordes H.O.: On a class of C*-algebras. Math. Ann. 170, 283–313 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  4. Dash A.T.: Joint spectra. Studia Math. T. XLV 225–237 (1973)

  5. Dunford N., Schwartz J.T.: Linear Operators, vol. II. Interscience Publishers, New York (1963)

    Google Scholar 

  6. Gamelin T.W.: Uniform Algebras. Prentice-Hall, Inc., Englewood Cliffs (1969)

    MATH  Google Scholar 

  7. Grudsky S., Quiroga-Barranco R., Vasilevski N.: Commutative C*-algebras of Toeplitz operators and quantization on the unit disk. J. Funct. Anal. 234(1), 1–44 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  8. Larsen R.: Banach Algebras. Marcel Dekker Inc., New York (1973)

    MATH  Google Scholar 

  9. Le T.: Finite-rank products of Toeplitz operators in several complex variables. Integr. Equ. Oper. Theory 63(4), 547–555 (2009)

    Article  MATH  Google Scholar 

  10. Luecking D.: Finite rank Toeplitz operators on the Bergman space. Proc. Am. Math. Soc. 136(5), 1717–1723 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  11. Quiroga-Barranco R., Vasilevski N.: Commutative C*-algebras of Toeplitz operators on the unit ball. I. Bargmann-type transforms and spectral representations of Toeplitz operators. Integr. Equ. Oper. Theory 59(3), 379–419 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  12. Quiroga-Barranco R., Vasilevski N.: Commutative C*-algebras of Toeplitz operators on the unit ball. II. Geometry of the level set of symbols. Integr. Equ. Oper. Theory 60(1), 89–132 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  13. Rabinovich V., Roch S., Silbermann B.: Limit Operators and Their Applications in Operator Theory. Birkhäuser, Basel (2004)

    Book  MATH  Google Scholar 

  14. Rickart C.A.: Banach algebras with an adjoint operation. Ann. Math. 4, 528–550 (1946)

    Article  MathSciNet  Google Scholar 

  15. Ryan R.A.: Introduction to Tensor Products of Banach Spaces. Springer, London (2002)

    MATH  Google Scholar 

  16. Vasilevski N.L.: On Bergman–Toeplitz operators with commutative symbol algebras. Integr. Equ. Oper. Theory 34(1), 107–126 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  17. Vasilevski N.L.: Toeplitz operators on the Bergman spaces: inside- the-domain effects. Contemp. Math. 289, 79–146 (2001)

    Article  MathSciNet  Google Scholar 

  18. Vasilevski N.L.: Bergman space structure, commutative algebras of Toeplitz operators and hyperbolic geometry. Integr. Equ. Oper. Theory 46, 235–251 (2003)

    MathSciNet  MATH  Google Scholar 

  19. Vasilevski N.L.: Quasi-radial quasi-homogeneous symbols and commutative Banach algebras of Toeplitz operators. Integr. Equ. Oper. Theory 66(1), 141–152 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  20. Vasilevski N.L.: Parabolic quasi-radial quasi-homogeneous symbols and commutative algebras of Toeplitz operators. Birkhäuser Oper. Theory Adv. Appl. 202, 553–568 (2010)

    MathSciNet  Google Scholar 

  21. Vasilevski, N.L., Grudsky, S.M., Maximenko, E.A.: Toeplitz operators on the Bergman space generated by radial symbols and slowly oscillating sequences. In: Proceedings of the Scientific School of I. B. Simonenko, Rostov-on-Don, Russia, pp. 38–43 (in Russian) (2010)

  22. Venugopalkrishna U.: Fredholm operators associated with strongly pseudoconvex domains in C n. J. Funct. Anal. 9, 349–373 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  23. Zhou Z.-H., Dong X.-T.: Algebraic properties of Toeplitz operators with radial symbols on the Bergman space of the unit ball. Integr. Equ. Oper. Theory 64, 137–154 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  24. Zelazko W.: Continuous characters and joint topological spectrum. Control Cybern. 36(3), 859–864 (2007)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikolai Vasilevski.

Additional information

W. Bauer has been supported by an “Emmy-Noether scholarship” of DFG (Deutsche Forschungsgemeinschaft). N. Vasilevski has been partially supported by CONACYT Project 102800, México.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Bauer, W., Vasilevski, N. On The Structure of A Commutative Banach Algebra Generated By Toeplitz Operators With Quasi-Radial Quasi-Homogeneous Symbols. Integr. Equ. Oper. Theory 74, 199–231 (2012). https://doi.org/10.1007/s00020-012-1987-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00020-012-1987-3

Mathematics Subject Classification (2000)

  • Primary 47B35
  • Secondary 47L80
  • 32A36

Keywords

  • Toeplitz operator
  • weighted Bergman space
  • commutativeBanach algebra
  • Gelfand theory
  • radical
  • quasi-radial
  • quasi-homogeneous