Skip to main content
Log in

Nikodym Maximal Functions Associated with Variable Planes in \({\mathbb{R}^{3}}\)

  • Published:
Integral Equations and Operator Theory Aims and scope Submit manuscript

Abstract

Given a vector field \({\mathfrak{a}}\) on \({\mathbb{R}^3}\) , we consider a mapping \({x\mapsto \Pi_{\mathfrak{a}}(x)}\) that assigns to each \({x\in\mathbb{R}^3}\) , a plane \({\Pi_{\mathfrak{a}}(x)}\) containing x, whose normal vector is \({\mathfrak{a}(x)}\) . Associated with this mapping, we define a maximal operator \({\mathcal{M}^{\mathfrak{a}}_N}\) on \({L^1_{loc}(\mathbb{R}^3)}\) for each \({N\gg 1}\) by

$$\mathcal{M}^{\mathfrak{a}}_Nf(x)=\sup_{x\in\tau} \frac{1}{|\tau|} \int_{\tau}|f(y)|\,dy$$

where the supremum is taken over all 1/N ×  1/N × 1 tubes τ whose axis is embedded in the plane \({\Pi_\mathfrak{a}(x)}\) . We study the behavior of \({\mathcal{M}^{\mathfrak{a}}_N}\) according to various vector fields \({\mathfrak{a}}\) . In particular, we classify the operator norms of \({\mathcal{M}^{\mathfrak{a}}_N}\) on \({L^2(\mathbb{R}^3)}\) when \({\mathfrak{a}(x)}\) is the linear function of the form (a 11 x 1 + a 21 x 2, a 12 x 1 + a 22 x 2, 1). The operator norm of \({\mathcal{M}^\mathfrak{a}_N}\) on \({L^2(\mathbb{R}^3)}\) is related with the number given by

$$D=(a_{12}+a_{21})^2-4a_{11}a_{22}.$$

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bourgain J.: Besicovitch type maximal operators and applications to Fourier analysi. Geom. Funct. Anal. 1, 147–187 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  2. Cordoba A.: The Kakeya maximal function and the spherical summation multipliers. Am. J. Math. 99, 1–22 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  3. Hörmander L.: Fourier integral operators I. Acta Math. 127, 79–183 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  4. Greenleaf A., Seeger A.: Fourier integral operators with fold sigularities. J. Reine Angew. Math. 455, 35–56 (1994)

    MathSciNet  MATH  Google Scholar 

  5. Kim J.: Two versions of Nikodym maximal functions on the Heisenberg group. J. Funct. Anal. 257, 1493–1518 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  6. Melrose R., Taylor M.: Near peak scattering and the correct Kirchhoff approximation for a convex obstacle. Adv. Math. 55, 242–315 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  7. Sogge C.: Concerning Nikodym-type sets in 3-dimensional curved spaces. J. Am. Math. Soc. 12(1), 1–31 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  8. Stein E.M.: Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals. Princeton Press, Princeton (1993)

    MATH  Google Scholar 

  9. Tao T.: From rotating needles to stability of waves: emerging connections between combinatorics, analysis, and PDE. Not. Am. Math. Soc. 48, 294–303 (2001)

    MATH  Google Scholar 

  10. Wainger S.: Applications of Fourier transform to averages over lower dimensional sets. Proc. Symp. Pure Math. 35(1), 85–94 (1979)

    Google Scholar 

  11. Wolff T.: An imporved bound for Kakeya type maximal function. Revista. Math. Iberoamericana 11, 651–674 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  12. Wolff, T.: Recent work connected with the Kakeya problem. In: Prospects in Mathematics (Princeton, NJ, 1996), pp. 129–162. Amer. Math. Soc., Providence (1999)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joonil Kim.

Additional information

The author was supported by the Korea Research Foundation(KRF) grant funded by the Korea government (MEST) (No.2011-0002587).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, J. Nikodym Maximal Functions Associated with Variable Planes in \({\mathbb{R}^{3}}\) . Integr. Equ. Oper. Theory 73, 455–480 (2012). https://doi.org/10.1007/s00020-012-1985-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00020-012-1985-5

Mathematics Subject Classification (2010)

Navigation