Skip to main content
Log in

The a priori tan Θ theorem for spectral subspaces

  • Published:
Integral Equations and Operator Theory Aims and scope Submit manuscript

Abstract

Let A be a self-adjoint operator on a separable Hilbert space \({{\mathfrak{H}}}\) . Assume that the spectrum of A consists of two disjoint components σ 0 and σ 1 such that the set σ 0 lies in a finite gap of the set σ 1. Let V be a bounded self-adjoint operator on \({{\mathfrak{H}}}\) off-diagonal with respect to the partition \({{\rm spec}(A)=\sigma_0\cup\sigma_1}\) . It is known that if \({\|V\| < \sqrt{2}d}\) , where \({d={\mathop{\rm dist}}(\sigma_0,\sigma_1)}\) , then the perturbation V does not close the gaps between σ 0 and σ 1 and the spectrum of the perturbed operator L = A + V consists of two isolated components ω0 and ω1 originating from σ 0 and σ 1, respectively. Furthermore, it is known that if V satisfies the stronger bound \({\|V\| < d}\) then for the difference of the spectral projections \({{\sf E}_A(\sigma_0)}\) and \({{\sf E}_{L}(\omega_0)}\) of A and L associated with the spectral sets σ 0 and ω0, respectively, the following sharp norm estimate holds:

$$\|{\sf E}_A(\sigma_0)-{\sf E}_{L}(\omega_0)\| \leq\sin\left(\arctan\frac{\|V\|}{d}\right).$$

In the present work we prove that this estimate remains valid and sharp also for   \({d\leq \|V\| < \sqrt{2}d}\) , which completely settles the issue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Albeverio, S., Makarov, K.A., Motovilov, A.K.: Graph subspaces and the spectral shift function. Can. J. Math. 55, 449–503 (2003). arXiv: math.SP/ 0105142 v3

    Google Scholar 

  2. Albeverio, S., Motovilov, A.K.: Sharpening the norm bound in the subspace perturbation theory. Complex Anal. Oper. Theory (to appear). arXiv: 1112.0149

  3. Albeverio, S., Motovilov, A.K., Selin, A.V.: The a priori tan θ theorem for eigenvectors. SIAM J. Matrix Anal. Appl. 29, 685–697 (2007). arXiv: math.SP/0512545

    Google Scholar 

  4. Birman M.S., Solomjak M.Z.: Spectral Theory of Self-Adjoint Operators in Hilbert Space. D. Reidel Publishing, Dordrecht (1987)

    MATH  Google Scholar 

  5. Davis C., Kahan W.M.: The rotation of eigenvectors by a perturbation. III. SIAM J. Numer. Anal. 7, 1–46 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  6. Grubišić, L., Kostrykin, V., Makarov, K.A., Veselić, K.: The tan 2Θ theorem for indefinite quadratic forms. arXiv:1006.3190 v1

  7. Kato T.: Perturbation Theory for Linear Operators. Springer, Berlin (1966)

    MATH  Google Scholar 

  8. Kostrykin, V., Makarov, K.A., Motovilov, A.K.: Existence and uniqueness of solutions to the operator Riccati equation. A geometric approach. Contemp. Math. 327, 181–198 (2003). arXiv: math.SP/0207125

    Google Scholar 

  9. Kostrykin, V., Makarov, K.A., Motovilov, A.K.: On the existence of solutions to the operator Riccati equation and the tan Θ theorem. Integr. Equ. Oper. Theory 51, 121–140 (2005). arXiv: math.SP/0210032 v2

    Google Scholar 

  10. Kostrykin, V., Makarov, K.A., Motovilov, A.K.: Perturbation of spectra and spectral subspaces. Trans. Am. Math. Soc. 359, 77–89 (2007). arXiv: math. SP/0306025

    Google Scholar 

  11. Li R.-C.: Relative perturbation theory: IV. sin 2θ theorems. Lin. Algebra Appl. 311, 45–60 (2000)

    Article  MATH  Google Scholar 

  12. Makarov, K.A., Seelmann, A.: Metric properties of the set of orthogonal projections and their applications to operator perturbation theory. arXiv: 1007.1575 v1

  13. Motovilov, A.K., Selin, A.V.: Some sharp norm estimates in the subspace perturbation problem. Integral Equ. Oper. Theory 56, 511–542 (2006). arXiv: math.SP/0409558 v2

    Google Scholar 

  14. Reed M., Simon B.: Methods of Mathematical Physics, I: Functional Analysis. Academic Press, New York (1972)

    Google Scholar 

  15. Tretter C.: Spectral inclusion for unbounded block operator matrices. J. Funct. Anal. 256, 3806–3829 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. Tretter C.: Spectral Theory of Block Operator Matrices and Applications. Imperial College Press, London (2008)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander K. Motovilov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Albeverio, S., Motovilov, A.K. The a priori tan Θ theorem for spectral subspaces. Integr. Equ. Oper. Theory 73, 413–430 (2012). https://doi.org/10.1007/s00020-012-1976-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00020-012-1976-6

Mathematics Subject Classification (2010)

Keywords

Navigation