Skip to main content
Log in

Zeroes of the Spectral Density of Discrete Schrödinger Operator with Wigner-von Neumann Potential

  • Published:
Integral Equations and Operator Theory Aims and scope Submit manuscript

Abstract

We consider a discrete Schrödinger operator \({\mathcal{J}}\) whose potential is the sum of a Wigner-von Neumann term \({\frac{c\sin(2\omega n+\delta)}n}\) and a summable term. The essential spectrum of the operator \({\mathcal{J}}\) is equal to the interval [−2, 2]. Inside this interval, there are two critical points \({\pm2\cos\omega}\) where eigenvalues may be situated. We prove that, generically, the spectral density of \({\mathcal{J}}\) has zeroes of the power \({\frac{|c|}{2|\sin\omega|}}\) at these points.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akhiezer N.I.: The classical moment problem and some related questions in analysis. Oliver & Boyd, (1965)

  2. Albeverio S.: On bound states in the continuum of N-body systems and the virial theorem. Ann. Physics 71, 167–276 (1972)

    Article  MathSciNet  Google Scholar 

  3. Behncke H.: Absolute continuity of Hamiltonians with von Neumann Wigner potentials I. Proc. Amer. Math. Soc. 111, 373–384 (1991)

    MathSciNet  MATH  Google Scholar 

  4. Behncke H.: Absolute continuity of Hamiltonians with von Neumann Wigner potentials II. Manuscripta Math. 71(1), 163–181 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  5. Behncke H.: The m-function for Hamiltonians with Wigner-von Neumann potentials. J. Math. Phys. 35(4), 1445–1462 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  6. Benzaid Z., Lutz D.A.: Asymptotic representation of solutions of perturbed systems of linear difference equations. Stud. Appl. Math. 77(3), 195–221 (1987)

    MathSciNet  MATH  Google Scholar 

  7. Birman M.S., Solomyak M.Z.: Spectral theory of selfadjoint operators in Hilbert space. Kluwer, Dordrecht (1987)

    Google Scholar 

  8. Burd V., Nesterov P.: Parametric resonance in adiabatic oscillators. Results Math. 58(1–2), 1–15 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. Deift P., Killip R.: On the Absolutely Continuous Spectrum of One-Dimensional Schrödinger Operators with Square Summable Potentials. Comm. Math. Phys. 203(2), 341–347 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  10. Harris W.A., Lutz D.A.: Asymptotic integration of adiabatic oscillators. J. Math. Anal. Appl. 51, 76–93 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  11. Hinton D.B., Klaus M., Shaw J.K.: Embedded half-bound states for potentials of Wigner-von Neumann type. Proc. Lond. Math. Soc. 3(3), 607–646 (1991)

    Article  MathSciNet  Google Scholar 

  12. Janas, J., Simonov, S.: Weyl-Titchmarsh type formula for discrete Schrödinger operator with Wigner-von Neumann potential. Studia Math., 201(2):167–189, arXiv:1003.3319 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  13. Klaus M.: Asymptotic behavior of Jost functions near resonance points for Wigner-von Neumann type potentials. J. Math. Phys. 32, 163–174 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  14. Kodaira K.: The eigenvalue problem for ordinary differential equations of the second order and Heisenberg’s theory of S-matrices. Amer. J. Math. 71(4), 921–945 (1949)

    Article  MathSciNet  MATH  Google Scholar 

  15. Kurasov P., Naboko S.: Wigner-von Neumann perturbations of a periodic potential: spectral singularities in bands. Math. Proc. Cambridge Philos. Soc. 142(01), 161–183 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kurasov, P., Simonov, S.: Weyl-Titchmarsh type formula for periodic Schrödinger operator with Wigner-von Neumann potential. Preprints in Mathematical Sciences, Lund University, 6:1–26, arXiv:1102.5213, (2010)

    Google Scholar 

  17. Lukic, M.: Orthogonal polynomials with recursion coefficients of generalized bounded variation. Comm. Math. Phys. 306:485–509, arXiv:1008.3844 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  18. Matveev V.B.: Wave operators and positive eigenvalues for a Schrödinger equation with oscillating potential. Theoret. Math. Phys. 15(3), 574–583 (1973)

    Article  Google Scholar 

  19. Naboko, S., Simonov, S.: Zeroes of the spectral density of the periodic Schrödinger operator with Wigner-von Neumann potential. Math. Proc. Cambridge Philos. Soc. (to appear). ArXiv:1102.5207

  20. Nesterov P.: Parametric resonance in some dynamic equations on time scales. Int. J. Difference Equ. 5(2), 217–231 (2010)

    MathSciNet  Google Scholar 

  21. Titchmarsh E.C.: Eigenfunction expansions associated with second-order differential equations. Part I. Clarendon Press, Oxford (1946)

    Google Scholar 

  22. Lotoreichik, V., Simonov, S.: Spectral analysis of the Kronig-Penney model with Wigner-von Neumann perturbation. Preprint. arXiv:1112.4717

  23. von Neumann J., Wigner E.P.: Über merkwürdige diskrete Eigenwerte. Z. Phys. 30, 465–467 (1929)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergey Simonov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Simonov, S. Zeroes of the Spectral Density of Discrete Schrödinger Operator with Wigner-von Neumann Potential. Integr. Equ. Oper. Theory 73, 351–364 (2012). https://doi.org/10.1007/s00020-012-1972-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00020-012-1972-x

Mathematics Subject Classification (2010)

Keywords

Navigation