Skip to main content
Log in

Essential Normality of Operators Close to Isometries

  • Published:
Integral Equations and Operator Theory Aims and scope Submit manuscript

Abstract

Let p(z, w) denote a complex polynomial in non-commutative variables z and w. Let \({\fancyscript{F}}\) be a collection of Hilbert-space operators such that the following hold: \({\fancyscript{F}}\) is invariant under unital *-representations; if \({N \in \fancyscript{F}}\) is invertible then p(N, N*) = 0. Then p(T, T*) is compact for every Fredholm member T of \({\fancyscript{F}}\). We use the above scheme to deduce essential normality of several operators close to isometries. A sample result reads as follows: A finitely multi-cyclic, expansive m-isometry is a compact perturbation of an essentially normal isometry. This result is best possible in the sense that there exists a cyclic 3-isometry which is not even essentially normal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agler, J.: An abstract approach to model theory. In: Surveys of some recent results in operator theory, vol. II, 1–23, Pitman Res. Notes Math. Ser, vol. 192, Longman Sci. Tech. Harlow (1988)

  2. Agler J., Stankus M.: m-isometric transformations of Hilbert spaces I. Integr. Equ. Oper. Theory 21, 383–429 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  3. Agler J., Stankus M.: m-isometric transformations of Hilbert spaces II. Integr. Equ. Oper. Theory 23, 1–48 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  4. Agler J., Stankus M.: m-isometric transformations of Hilbert spaces III. Integr. Equ. Oper. Theory 24, 379–421 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  5. Brown, L., Douglas, R., Fillmore, P.: Unitary equivalence modulo the compact operators and extensions of C*-algebras. In: Proceedings of a conference on operator theory, Dalhousie Univ., Halifax, NS. Lecture Notes in Math., vol. 345, pp. 58–128. Springer, Berlin (1973)

  6. Bermúdez T., Martinón A., Negrín E.: Weighted shift operators which are m-isometries. Integr. Equ. Oper. Theory 68, 301–312 (2010)

    Article  MATH  Google Scholar 

  7. Chavan S.: On operators Cauchy dual to 2-hyperexpansive operators. Proc. Edin. Math. Soc. 50, 637–652 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chavan S.: On operators close to isometries. Studia Math. 186, 275–293 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  9. Conway J.: A Course in Functional Analysis. Springer, New York (1997)

    Google Scholar 

  10. Hadwin D., Nordgren E.: Extensions of the Berger–Shaw theorem. Proc. Am. Math. Soc. 102, 517–525 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  11. Jabloński Z.: Complete hyperexpansivity, subnormality and inverted boundedness conditions. Integr. Equ. Oper. Theory 44, 316–336 (2002)

    Article  MATH  Google Scholar 

  12. Martin M., Putinar M.: Lectures on hyponormal operators, operator theory: advances and applications. Birkhuser, Besel (1989)

    Google Scholar 

  13. Shimorin S.: Wold-type decompositions and wandering subspaces for operators close to isometries. J. Reine Angew. Math. 531, 147–189 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  14. Sholapurkar V., Athavale A.: Completely and alternatingly hyperexpansive operators. J. Oper. Theory 43, 43–68 (2000)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sameer Chavan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chavan, S. Essential Normality of Operators Close to Isometries. Integr. Equ. Oper. Theory 73, 49–55 (2012). https://doi.org/10.1007/s00020-012-1958-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00020-012-1958-8

Mathematics Subject Classification (2010)

Keywords

Navigation