Skip to main content
Log in

Super-Wavelets Versus Poly-Bergman Spaces

  • Published:
Integral Equations and Operator Theory Aims and scope Submit manuscript

Abstract

We investigate a vector-valued version of the classical continuous wavelet transform. Special attention is given to the case when the analyzing vector consists of the first elements of the basis of admissible functions, namely the functions whose Fourier transform is a Laguerre function. In this case, the resulting spaces are, up to a multiplier isomorphism, poly-Bergman spaces. To demonstrate this fact, we introduce a new map and call it the polyanalytic Bergman transform. Our method of proof uses Vasilevski’s restriction principle for Bergman-type spaces. The construction is based on the idea of multiplexing of signals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abreu L.D.: Wavelet frames with Laguerre functions. C. R. Acad. Sci. Paris Ser. I 349, 255–258 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  2. Abreu L.D.: Sampling and interpolation in Bargmann–Fock spaces of polyanalytic functions. Appl. Comput. Harmon. Anal. 29, 287–302 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  3. Abreu L.D.: On the structure of Gabor and super Gabor spaces. Monatsh. Math. 161, 237–253 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. Abreu L.D., Gröchenig K.: Banach Gabor frames with Hermite functions: polyanalytic spaces from the Heisenberg group. Appl. Anal. (in press, 2012). doi:10.1080/00036811.2011.584186

  5. Balan, R.: Multiplexing of signals using superframes. In: SPIE Wavelets Applications. Signal and Image processing XIII, vol. 4119, pp. 118–129 (2000)

  6. Balk M.B.: Polyanalytic Functions. Akad. Verlag, Berlin (1991)

    MATH  Google Scholar 

  7. Daubechies, I.: Ten Lectures on Wavelets, CBMS-NSF Regional Conference Series in Applied Mathematics (1992)

  8. Gröchenig K.: Foundations of Time–Frequency Analysis. Birkhäuser, Boston (2001)

    MATH  Google Scholar 

  9. Gröchenig K., Lyubarskii Y.: Gabor (super)frames with Hermite functions. Math. Ann. 345, 267–286 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. Han, D., Larson, D.R.: Frames, bases and group representations. Mem. Am. Math. Soc. 147(697) (2000) (monograph)

  11. Hutnik O.: On the structure of the space of wavelet transforms. C. R. Math. Acad. Sci. Paris 346, 649–652 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  12. Hutnik O.: A note on wavelet subspaces. Monatsh. Math. 160, 59–72 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  13. Lang S.: SL(2,R). Springer, Berlin (1985)

    Google Scholar 

  14. Vasilevski N.L.: On the structure of Bergman and poly-Bergman spaces. Int. Equ. Oper. Theory 33(4), 471–488 (1999)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis Daniel Abreu.

Additional information

Partially supported by CMUC-FCT (Portugal) through European program COMPETE/FEDER and project PTDC/MAT/114394/2009, POCI 2010 and FSE and by Austrian Science Foundation (FWF) Project “ Frames and Harmonic Analysis”.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abreu, L.D. Super-Wavelets Versus Poly-Bergman Spaces. Integr. Equ. Oper. Theory 73, 177–193 (2012). https://doi.org/10.1007/s00020-012-1956-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00020-012-1956-x

Mathematics Subject Classification (2010)

Keywords

Navigation