Skip to main content
Log in

Shape Derivatives of Boundary Integral Operators in Electromagnetic Scattering. Part II: Application to Scattering by a Homogeneous Dielectric Obstacle

  • Published:
Integral Equations and Operator Theory Aims and scope Submit manuscript

Abstract

We develop the shape derivative analysis of solutions to the problem of scattering of time-harmonic electromagnetic waves by a penetrable bounded obstacle. Since boundary integral equations are a classical tool to solve electromagnetic scattering problems, we study the shape differentiability properties of the standard electromagnetic boundary integral operators. The latter are typically bounded on the space of tangential vector fields of mixed regularity \({\mathsf T \mathsf H^{-\frac{1}{2}}({\rm div}_{\Gamma},\Gamma)}\). Using Helmholtz decomposition, we can base their analysis on the study of pseudo-differential integral operators in standard Sobolev spaces, but we then have to study the Gâteaux differentiability of surface differential operators. We prove that the electromagnetic boundary integral operators are infinitely differentiable without loss of regularity. We also give a characterization of the first shape derivative of the solution of the dielectric scattering problem as a solution of a new electromagnetic scattering problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Buffa A., Ciarlet P. Jr: On traces for functional spaces related to Maxwell’s equations. I. An integration by parts formula in Lipschitz polyhedra. Math. Methods Appl. Sci. 24, 9–30 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  2. Buffa A., Ciarlet P. Jr: On traces for functional spaces related to Maxwell’s equations. II. Hodge decompositions on the boundary of Lipschitz polyhedra and applications. Math. Methods Appl. Sci. 24, 31–48 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  3. Buffa A., Costabel M., Schwab C.: Boundary element methods for Maxwell’s equations on non-smooth domains. Numer. Math. 92, 679–710 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  4. Buffa A., Costabel M., Sheen D.: On traces for H(curl,Ω) in Lipschitz domains. J. Math. Anal. Appl. 276, 845–867 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  5. Buffa A., Hiptmair R., von Petersdorff T., Schwab C.: Boundary element methods for Maxwell transmission problems in Lipschitz domains. Numer. Math. 95, 459–485 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  6. Colton, D. Kress, R.: Inverse acoustic and electromagnetic scattering theory. Applied Mathematical Sciences, 2nd edn, vol. 93. Springer, Berlin (1998)

  7. Costabel M.: Boundary integral operators on Lipschitz domains: elementary results. SIAM J. Math. Anal. 19, 613–626 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  8. Costabel M., Le Louër F.: On the Kleinman–Martin integral equation method for the electromagnetic scattering problem by a dielectric body. SIAM J. Appl. Math. 71, 635–656 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  9. Costabel, M., Le Louër, F.: Shape derivatives of boundary integral operators in electromagnetic scattering. Part I. Shape differentiability of pseudo-homogeneous boundary integral operators. Integr. Equ. Oper. Theory (2012). doi:10.1007/s00020-012-1954-z

  10. de La Bourdonnaye A. : Décomposition de H 1/2div (Γ) et nature de l’opérateur de Steklov–Poincaré du problème extérieur de l’électromagnétisme. C. R. Acad. Sci. Paris Sér. I Math. 316, 369–372 (1993)

    MATH  Google Scholar 

  11. Delfour, M.C., Zolésio, J.-P.: Shapes and geometries. Analysis, Differential Calculus, and Optimization. Advances in Design and Control, vol. 93. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (2001)

  12. Delfour, M.C., Zolésio, J.-P.: Tangential calculus and shape derivatives. Shape optimization and optimal design (Cambridge, 1999), Lecture Notes in Pure and Applied Mathematics, vol. 216, pp. 37–60. Dekker, New York (2001)

  13. Hadamard J.: Sur quelques questions du calcul des variations. Ann. Sci. École Norm. Sup. 24(3), 203–231 (1907)

    MathSciNet  Google Scholar 

  14. Haddar, H., Kress, R.: On the Fréchet derivative for obstacle scattering with an impedance boundary condition. SIAM J. Appl. Math. 65, 194–208 (2004) (electronic)

    Google Scholar 

  15. Henrot, A., Pierre, M.: Variation et optimisation de formes. Mathématiques and Applications (Berlin) (Mathematics and Applications), vol. 48. Springer, Berlin (2005). Une analyse géométrique. (A geometric analysis)

  16. Hettlich F.: Fréchet derivatives in inverse obstacle scattering. Inverse Problems 11, 371–382 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  17. Hettlich, F.: Erratum: Frechet derivatives in inverse obstacle scattering [Inverse Problems 11(2), 371–382 (1995); MR1324650 (95k:35217)], Inverse Problems 14, 209–210 (1998)

  18. Hettlich, F., Rundell, W.: A second degree method for nonlinear inverse problems. SIAM J. Numer. Anal. 37, 587–620 (2000) (electronic)

    Google Scholar 

  19. Hohage, T.: Iterative methods in inverse obstacle scattering: regularization theory of linear and nonlinear exponentially ill-posed problems. PhD in Numerical Analysis, University of Linz, Linz (1999)

  20. Hsiao, G.C., Wendland, W.L.: Boundary integral equations. Applied Mathematical Sciences, vol. 164. Springer, Berlin (2008)

  21. Kirsch A.: The domain derivative and two applications in inverse scattering theory. Inverse Problems 9, 81–96 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  22. Kress, R.: Electromagnetic waves scattering: scattering by obstacles. In: Pike, E.R., Sabatier, P.C. (eds.) Scattering, pp. 191–210. Academic Press, London (2001)

  23. Kress, R., Päivärinta, L.: On the far field in obstacle scattering. SIAM J. Appl. Math. 59, 1413–1426 (1999) (electronic)

    Google Scholar 

  24. Le Louër, F.: Optimisation de formes d’antennes lentilles intégrées aux ondes millimétrique. PhD in Numerical Analysis, Université de Rennes 1, Rennes 1 (2009). http://www.tel.archives-ouvertes.fr/tel-00421863/fr/

  25. Leugering, G., Novotny, A.A., Menzala, G.P., Sokołowski, J.: On shape optimization for an evolution coupled system. Appl. Math. Optim. 64, 441–466 (2011)

    Google Scholar 

  26. Martin P.A., Ola P.: Boundary integral equations for the scattering of electromagnetic waves by a homogeneous dielectric obstacle. Proc. R Soc. Edinb. Sect. A 123, 185–208 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  27. Monk, P.: Finite element methods for Maxwell’s equations. Numerical Mathematics and Scientific Computation. Oxford University Press, New York (2003)

  28. Nédélec, J.-C.: Acoustic and electromagnetic equations. Integral Representations for Harmonic Problems. Applied Mathematical Sciences, vol. 144. Springer, New York (2001)

  29. Potthast R.: Fréchet differentiability of boundary integral operators in inverse acoustic scattering. Inverse Problems 10, 431–447 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  30. Potthast R.: Domain derivatives in electromagnetic scattering. Math. Methods Appl. Sci. 19, 1157–1175 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  31. Potthast R.: Fréchet differentiability of the solution to the acoustic Neumann scattering problem with respect to the domain. J. Inverse Ill-Posed Problems 4, 67–84 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  32. Potthast, R.: Fréchet-Differenzierbarkeit von Randintegraloperatoren und Randwertproblemen zur Helmholtzgleichung und den zeitharmonischen Maxwellgleichungen. PhD in Numerical Analysis, Göttingen (1996)

  33. Schwartz, J.T.: Nonlinear functional analysis. Notes on Mathematics and its Applications. Gordon and Breach Science Publishers, New York (1969)

  34. Sokołowski, J., Zolésio, J.-P.: Introduction to shape optimization. In: Shape Sensitivity Analysis. Springer Series in Computational Mathematics, vol. 16. Springer, Berlin (1992)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Costabel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Costabel, M., Le Louër, F. Shape Derivatives of Boundary Integral Operators in Electromagnetic Scattering. Part II: Application to Scattering by a Homogeneous Dielectric Obstacle. Integr. Equ. Oper. Theory 73, 17–48 (2012). https://doi.org/10.1007/s00020-012-1955-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00020-012-1955-y

Keywords

Navigation