Skip to main content
Log in

Linear Maps Preserving Operators of Local Spectral Radius Zero

  • Published:
Integral Equations and Operator Theory Aims and scope Submit manuscript

Abstract

Let X be a complex Banach space and let \({\mathcal{B}(X)}\) be the space of all bounded linear operators on X. For \({x \in X}\) and \({T \in \mathcal{B}(X)}\), let \({r_{T}(x) =\limsup_{n \rightarrow \infty} \| T^{n}x\| ^{1/n}}\) denote the local spectral radius of T at x. We prove that if \({\varphi : \mathcal{B}(X) \rightarrow \mathcal{B}(X)}\) is linear and surjective such that for every \({x \in X}\) we have r T (x) = 0 if and only if \({r_{\varphi(T)}(x) = 0}\), there exists then a nonzero complex number c such that \({\varphi(T) = cT}\) for all \({T \in \mathcal{B}(X) }\). We also prove that if Y is a complex Banach space and \({\varphi :\mathcal{B}(X) \rightarrow \mathcal{B}(Y)}\) is linear and invertible for which there exists \({B \in \mathcal{B}(Y, X)}\) such that for \({y \in Y}\) we have r T (By) = 0 if and only if \({ r_{\varphi ( T) }(y)=0}\), then B is invertible and there exists a nonzero complex number c such that \({\varphi(T) =cB^{-1}TB}\) for all \({T \in \mathcal{B}(X)}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aiena P.: Fredholm and local spectral theory, with applications to multipliers. Kluwer, Dordrecht (2004)

    MATH  Google Scholar 

  2. Bourhim A.: Surjective linear maps preserving local spectra. Linear Algebra Appl. 432, 383–393 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bourhim A., Miller V.G.: Linear maps on \({\mathcal{M}_{n}}\) preserving the local spectral radius. Studia Math. 188(1), 67–75 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bourhim A., Ransford T.J.: Additive maps preserving local spectrum. Integr. Equ. Oper. Theory 55, 377–385 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bračič J., Müller V.: Local spectrum and local spectral radius of an operator at a fixed vector. Studia Math. 194, 155–162 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  6. Eidelheit M.: On isomorphisms of rings of linear operators. Studia Math. 9, 97–105 (1940)

    Google Scholar 

  7. González M., Mbekhta M.: Linear maps on \({\mathcal{M}_{n}}\) preserving the local spectrum. Linear Algebra Appl. 427, 176–182 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  8. Jafarian A.A., Sourour A.R.: Spectrum-preserving linear maps. J. Funct. Anal. 66, 255–261 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  9. Sourour A.R.: Invertibility preserving maps on \({\mathcal{L}(X)}\). Trans. AMS 348(1), 13–30 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  10. Vrbovà P.: On local spectral properties of operators in Banach spaces. Czech Math. J. 23, 483–492 (1973)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Constantin Costara.

Additional information

This work was supported by CNCSIS-UEFISCSU, project number 24/06.08.2010, PN II-RU Code 300/2010.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Costara, C. Linear Maps Preserving Operators of Local Spectral Radius Zero. Integr. Equ. Oper. Theory 73, 7–16 (2012). https://doi.org/10.1007/s00020-012-1953-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00020-012-1953-0

Mathematics Subject Classification (2000)

Keywords

Navigation