Skip to main content
Log in

Boundedness and Compactness of Pseudodifferential Operators with Non-Regular Symbols on Weighted Lebesgue Spaces

  • Published:
Integral Equations and Operator Theory Aims and scope Submit manuscript

Abstract

Applying the boundedness on weighted Lebesgue spaces of the maximal singular integral operator S * related to the Carleson–Hunt theorem on almost everywhere convergence, we study the boundedness and compactness of pseudodifferential operators a(x, D) with non-regular symbols in \({L^\infty(\mathbb{R}, V(\mathbb{R})), PC(\overline{\mathbb{R}}, V(\mathbb{R}))}\) and \({\Lambda_\gamma(\mathbb{R}, V_d(\mathbb{R}))}\) on the weighted Lebesgue spaces \({L^p(\mathbb{R},w)}\) , with 1 < p <  ∞ and \({w\in A_p(\mathbb{R})}\) . The Banach algebras \({L^\infty(\mathbb{R}, V(\mathbb{R}))}\) and \({PC(\overline{\mathbb{R}}, V(\mathbb{R}))}\) consist, respectively, of all bounded measurable or piecewise continuous \({V(\mathbb{R})}\) -valued functions on \({\mathbb{R}}\) where \({V(\mathbb{R})}\) is the Banach algebra of all functions on \({\mathbb{R}}\) of bounded total variation, and the Banach algebra \({\Lambda_\gamma(\mathbb{R}, V_d(\mathbb{R}))}\) consists of all Lipschitz \({V_d(\mathbb{R})}\) -valued functions of exponent \({\gamma \in (0,1]}\) on \({\mathbb{R}}\) where \({V_d(\mathbb{R})}\) is the Banach algebra of all functions on \({\mathbb{R}}\) of bounded variation on dyadic shells. Finally, for the Banach algebra \({\mathfrak{A}_{p,w}}\) generated by all pseudodifferential operators a(x, D) with symbols \({a(x, \lambda) \in PC(\overline{\mathbb{R}}, V(\mathbb{R}))}\) on the space \({L^p(\mathbb{R}, w)}\) , we construct a non-commutative Fredholm symbol calculus and give a Fredholm criterion for the operators \({A \in \mathfrak{A}_{p,w}}\) .

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bergh J., Löfström J.: Interpolation Spaces. An Introduction. Springer, Berlin (1976)

    Book  MATH  Google Scholar 

  2. Böttcher, A., Karlovich, Yu.I.: Carleson Curves, Muckenhoupt Weights, and Toeplitz Operators. In: Progress in Mathematics, vol. 154. Birkhäuser, Basel (1997)

  3. Böttcher A., Karlovich Yu.I., Rabinovich V.S.: Mellin pseudodifferential operators with slowly varying symbols and singular integral on Carleson curves with Muckenhoupt weights. Manuscripta Math. 95, 363–376 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  4. Böttcher A., Karlovich Yu.I., Rabinovich V.S.: The method of limit operators for one-dimensional singular integrals with slowly oscillating data. J. Oper. Theory 43, 171–198 (2000)

    MATH  Google Scholar 

  5. Böttcher, A., Karlovich, Yu.I., Rabinovich, V.S.: Singular integral operators with complex conjugation from the viewpoint of pseudodifferential operators. In: Problems and Methods in Mathematical Physics. The Siegfried Prössdorf Memorial Volume. Operator Theory: Advances and Applications, vol. 121, pp. 36–59. Birkhäuser, Basel (2001)

  6. Böttcher, A., Karlovich, Yu.I., Spitkovsky, I.M. Convolution Operators and Factorization of Almost Periodic Matrix Functions. In: Operator Theory: Advances and Applications, vol. 131. Birkhäuser, Basel (2002)

  7. Böttcher A., Spitkovsky I.M.: Wiener-Hopf integral operators with PC symbols on spaces with Muckenhoupt weight. Revista Matemática Iberoamericana 9, 257–279 (1993)

    Article  MATH  Google Scholar 

  8. Böttcher A., Spitkovsky I.M.: Pseudodifferential operators with heavy spectrum. Integr. Equ. Oper. Theory 19, 251–269 (1994)

    Article  MATH  Google Scholar 

  9. Buckley S.M.: Estimates for operator norms on weighted spaces and reverse Jensen inequalities. Trans. Am. Math. Soc. 340, 253–272 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  10. Calderón A.P., Vaillancourt R.: On the boundedness of pseudodifferential operators. J. Math. Soc. Jpn. 23, 374–378 (1971)

    Article  MATH  Google Scholar 

  11. Carleson L.: On convergence and growth of partial sums of Fourier series. Acta Math. 116, 135–157 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  12. Coifman R.R., Meyer Y.: Au delà à des opérateurs pseudodifférentiels. Astérisque 57, 1–184 (1978)

    MathSciNet  Google Scholar 

  13. Cordes H.O.: On compactness of commutators of multiplications and convolutions, and boundedness of pseudodifferential operators. J. Funct. Anal. 18, 115–131 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  14. Cordes, H.O.: Elliptic Pseudo-Differential Operators—An Abstract Theory. In: Lecture Notes in Mathematics, vol. 756. Springer, Berlin (1979)

  15. Duduchava R.V.: Integral Equations with Fixed Singularities. Teubner, Leipzig (1979)

    MATH  Google Scholar 

  16. Duoandikoetxea J.: Fourier Analysis. American Mathematical Society, Providence (2000)

    Google Scholar 

  17. Dyn’kin, E.M.: Methods of the Theory of Singular Integrals: Hilbert Transform and Calderón–Zygmund Theory. In: Commutative Harmonic Analysis I: General Surveys, Classical Results. Encyclopedia of Mathematical Sciences, vol. 15, pp. 167–259. Springer, Berlin (1991) (Russian original, VINITI, Moscow (1987))

  18. Garnett J.B.: Bounded Analytic Functions. Academic Press, New York (1981)

    MATH  Google Scholar 

  19. Grafakos L.: Classical and Modern Fourier Analysis. Pearson/Prentice Hall, Upper Saddle River (2004)

    MATH  Google Scholar 

  20. Grafakos L., Martell J.M., Soria F.: Weighted norm inequalities for maximally modulated singular integral operators. Math. Ann. 331, 359–394 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  21. Haaser N.B., Sullivan J.A.: Real Analysis. Dover, New York (1991)

    Google Scholar 

  22. Hoh W.: A symbolic calculus for pseudo differential operators generating Feller semigroups. Osaka J. Math. 35, 789–820 (1998)

    MathSciNet  MATH  Google Scholar 

  23. Hoh W.: Perturbations of pseudodifferential operators with negative definite symbol. Appl. Math. Optim. 45, 269–281 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  24. Hunt R.A.: On the convergence of Fourier series. In: Haimo, D. (eds) Orthogonal Expansions and Their Continuous Analogues. Edwardsville (1967), pp. 235–255. Southern Illinois University Press, Carbondale (1968)

    Google Scholar 

  25. Hunt R.A., Young W.-S.: A weighted norm inequality for Fourier series. Bull. Am. Math. Soc. 80, 274–277 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  26. Jacob N., Tokarev A.G.: A parameter-dependent symbolic calculus for pseudo-differential operators with negative-definite symbols. J. Lond. Math. Soc. 70, 780–796 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  27. Jørsboe, O.G., Melbro, L.: The Carleson–Hunt Theorem on Fourier Series. In: Lecture Notes in Mathematics, vol. 911. Springer, Berlin (1982)

  28. Karlovich Yu.I.: An algebra of pseudodifferential operators with slowly oscillating symbols. Proc. Lond. Math. Soc. 92(3), 713–761 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  29. Karlovich, Yu.I.: Pseudodifferential operators with compound slowly oscillating symbols. In: The Extended Field of Operator Theory. Operator Theory: Advances and Applications, vol. 171, pp. 189–224. Birkhäuser, Basel (2007)

  30. Karlovich, Yu.I.: Algebras of pseudodifferential operators with discontinuous symbols. In: Modern Trends in Pseudo-Differential Operators. Operator Theory: Advances and Applications, vol. 172, pp. 207–233. Birkhäuser, Basel (2007)

  31. Karlovich Yu.I.: Pseudodifferential operators with compound non-regular symbols. Math. Nachr. 280, 1128–1144 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  32. Karlovich, Yu.I.: Nonlocal singular integral operators with slowly oscillating data. In: Operator Algebras, Operator Theory and Applications. Operator Theory: Advances and Applications, vol. 181, pp. 229–261. Birkhäuser, Basel (2008)

  33. Karlovich, Yu.I.: The Haseman boundary value problem with slowly oscillating data. In: Analytical Methods of Analysis and Differential Equations: AMADE 2006, pp. 81–110. Cambridge Scientific Publishers, Cambridge (2008)

  34. Karlovich, Yu.I.: An algebra of shift-invariant singular integral operators with slowly oscillating data and its application to operators with a Carleman shift. In: Analysis, Partial Differential Equations and Applications. The Vladimir Maz’ya Anniversary Volume. Operator Theory: Advances and Applications, vol. 193, pp. 81–95. Birkhäuser, Basel (2009)

  35. Karlovich Yu.I., Ramírez de Arellano E.: Singular integral operators with fixed singularities on weighted Lebesgue spaces. Integr. Equ. Oper. Theory 48, 331–363 (2004)

    Article  MATH  Google Scholar 

  36. Kenig C.E., Tomas P.A.: Maximal operators defined by Fourier multipliers. Studia Math. 68, 79–83 (1980)

    MathSciNet  MATH  Google Scholar 

  37. Krasnoselskii, M.A., Zabreiko, P.P., Pustylnik, E.I., Sobolevskii, P.E.: Integral Operators in Spaces of Summable Functions. Noordhoff I.P., Leyden (1976) (Russian original, Nauka, Moscow (1966))

  38. Kurtz D.S.: Littlewood–Paley and multiplier theorems on weighted L p spaces. Trans. Am. Math. Soc. 259, 235–254 (1980)

    MathSciNet  MATH  Google Scholar 

  39. Marschall J.: Pseudo-differential operators with nonregular symbols of the class \({S^m_{\rho\delta}}\) . Comm. Part. Diff. Equ. 12, 921–965 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  40. Marschall J.: On the boundedness and compactness of nonregular pseudo-differential operators. Math. Nachr. 175, 231–262 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  41. Marschall J.: Nonregular pseudo-differential operators. Z. Anal. Anwendungen 15, 109–148 (1996)

    MathSciNet  MATH  Google Scholar 

  42. Persson A.: Compact linear mappings between interpolation spaces. Arkiv för Matematik 5(13), 215–219 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  43. Rabinovich, V., Roch, S., Silbermann, B.: Limit Operators and Their Applications in Operator Theory. In: Operator Theory: Advances and Applications, vol. 150. Birkhäuser, Basel (2004)

  44. Schwartz L.: Analyse Mathématique. Cours 1. Hermann, Paris (1967)

    Google Scholar 

  45. Stein E.M.: Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals. Princeton Univ. Press, Princeton (1993)

    MATH  Google Scholar 

  46. Taylor M.E.: Pseudodifferential Operators and Nonlinear PDE. Birkhäuser, Boston (1991)

    Book  MATH  Google Scholar 

  47. Taylor M.E.: Tools for PDE. Pseudodifferential Operators, Paradifferential Operators, and Layer Potentials. American Mathematical Society, Providence (2000)

    MATH  Google Scholar 

  48. Torchinsky A.: Real-Variable Methods in Harmonic Analysis. Academic Press, San Diego (1986)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. I. Karlovich.

Additional information

This study was partially supported by the SEP-CONACYT Project No. 25564 (México) and by PROMEP (México) via “Proyecto de Redes”.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karlovich, Y.I. Boundedness and Compactness of Pseudodifferential Operators with Non-Regular Symbols on Weighted Lebesgue Spaces. Integr. Equ. Oper. Theory 73, 217–254 (2012). https://doi.org/10.1007/s00020-012-1951-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00020-012-1951-2

Mathematics Subject Classification (2010)

Keywords

Navigation