Skip to main content
Log in

Single and Double Layer Potentials on Domains with Conical Points I: Straight Cones

  • Published:
Integral Equations and Operator Theory Aims and scope Submit manuscript

Abstract

Let \({\Omega = \mathbb{R}^+ \omega}\) be an open straight cone in \({\mathbb{R}^n, n\geq3}\) , where \({\omega \subset S^{n-1}}\) is a smooth subdomain of the unit sphere. Denote by K and S the double and single layer potential operators associated to Ω and the Laplace operator Δ. Let r be the distance to the origin. We consider a natural class of dilation invariant operators on Ω, called Mellin convolution operators and show that \({K_a :=r^{a}Kr^{-a}}\) and \({S_b := r^{b-\frac{1}{2}}Sr^{-b-\frac{1}{2}}}\) are Mellin convolution operators for \({a \in (-1, n-1)}\) and \({b \in (\frac{1}{2}, n-\frac{3}{2})}\) . It is known that a Mellin convolution operator T is invertible if, and only if, its Mellin transform \({\hat T( \lambda)}\) is invertible for any real λ. We establish a reduction procedure that relates the Mellin transforms of K a and S b to the single and, respectively, double layer potential operators associated to some other elliptic operators on ω, which can be shown to be invertible using the classical theory of layer potential operators on smooth domains. This reduction procedure thus allows us to prove that \({\frac{1}{2}\pm K}\) and S are invertible between suitable weighted Sobolev spaces. A classical consequence of the invertibility of these operators is a solvability result in weighted Sobolev spaces for the Dirichlet problem on Ω.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aastrup J., Melo S., Monthubert B., Schrohe E.: Boutet de Monvel’s calculus and groupoids I. J. Noncommut. Geom. 4(3), 313–329 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ammann B., Lauter R., Nistor V.: Pseudodifferential operators on manifolds with a Lie structure at infinity. Ann. Math. (2) 165(3), 717–747 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  3. Angell T.S., Kleinman R.E., Král J.: Layer potentials on boundaries with corners and edges. Časopis Pěst Mat. 113(4), 387–402 (1988)

    MATH  Google Scholar 

  4. Băcuţă C., Mazzucato A., Nistor V., Zikatanov L.: Interface and mixed boundary value problems on n-dimensional polyhedral domains. Doc. Math. 15, 687–745 (2010)

    MathSciNet  MATH  Google Scholar 

  5. Bremer J., Rokhlin V.: Efficient discretization of Laplace boundary integral equations on polygonal domains. J. Comput Phys. 229(7), 2507–2525 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  6. Buffa A., Hiptmair R., von Petersdorff T., Schwab C.: Boundary element methods for Maxwell transmission problems in Lipschitz domains. Numer. Math. 95(3), 459–485 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  7. Costabel M.: Boundary integral operators on curved polygons. Ann. Mat. Pura Appl. (4) 133, 305–326 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  8. Courant, R., Hilbert, D.: Methods of mathematical physics. Partial differential equations. In: Wiley Classics Library, vol. II. Wiley, New York (1989). Reprint of the 1962 original

  9. Egorov Y., Schulze B.-W.: Pseudo-differential operators, singularities, applications. In: Operator Theory: Advances and Applications, vol. 93. Birkhäuser Verlag, Basel (1997)

    Book  Google Scholar 

  10. Elschner J.: The double layer potential operator over polyhedral domains. I. Solvability in weighted Sobolev spaces. Appl. Anal. 45(1–4), 117–134 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  11. Evans L.: Partial differential equations. In: Graduate Studies in Mathematics, vol. 19. American Mathematical Society, Providence (1998)

    Google Scholar 

  12. Fabes E., Jodeit M., Lewis J.: Double layer potentials for domains with corners and edges. Indiana Univ. Math. J. 26(1), 95–114 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  13. Fabes E., Jodeit M., Rivière N.: Potential techniques for boundary value problems on C 1-domains. Acta Math. 141(3–4), 165–186 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  14. Folland G.: Introduction to Partial Differential Equations, 2nd . Princeton University Press, Princeton (1995)

    MATH  Google Scholar 

  15. Gauss, C.F.: Allgemeine Lehrsätze in Beziehung auf die im verkelirten Verhdltrnisse des, Quadrats der Entfernung wirkenden Anziehungs-und Abstossungskrdfte Gauss’ Werke, Band V, (1839) Göttingen, 1877

  16. Hörmander, L.: The analysis of linear partial differential operators. III. Pseudodifferential operators. In: Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], volume 274. Springer, Berlin (1985)

  17. Hsiao G., Wendland W.L.: Boundary integral equations. In: Applied Mathematical Sciences, vol. 164. Springer, Berlin (2008)

    Google Scholar 

  18. Jerison D., Kenig C.: The Dirichlet problem in nonsmooth domains. Ann. Math. (2) 113(2), 367–382 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  19. Jerison D., Kenig C.: The Neumann problem on Lipschitz domains. Bull. Am. Math. Soc. (N.S.) 4(2), 203–207 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  20. Jerison D., Kenig C.: The inhomogeneous Dirichlet problem in Lipschitz domains. J. Funct. Anal. 130(1), 161–219 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  21. Kapanadze D., Schulze B.-W.: Boundary-contact problems for domains with conical singularities. J. Differ. Equ. 217(2), 456–500 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  22. Kellogg, R.: Singularities in interface problems. In: Numerical Solution of Partial Differential Equations, II (SYNSPADE 1970) (Proc. Sympos., Univ. of Maryland, College Park, Md., 1970), pp. 351–400. Academic Press, New York (1971)

  23. Kenig, C.: Recent progress on boundary value problems on Lipschitz domains. In: Pseudodifferential Operators and Applications (Notre Dame, Ind., 1984). Proc. Sympos. Pure Math., vol. 43, pp. 175–205. Amer. Math. Soc., Providence (1985)

  24. Kenig, C., Pipher, J.: The Neumann problem for elliptic equations with nonsmooth coefficients. II. Duke Math. J. 81(1):227–250 (1995). A celebration of John F. Nash, Jr (1996)

  25. M. Kohr, C. Pintea, and W. L. Wendland. On mapping properties of layer potential operators for Brinkman equations on Lipschitz domains in Riemannian manifolds. Mathematica 52(75)(1):31–46 (2010).

    Google Scholar 

  26. Kondrat′ev V.: Boundary value problems for elliptic equations in domains with conical or angular points. Trudy Moskov. Mat. Obšč. 16, 209–292 (1967)

    MATH  Google Scholar 

  27. Kozlov V., Maz′ya V., Rossmann J.: Spectral problems associated with corner singularities of solutions to elliptic equations. In: Mathematical Surveys and Monographs, vol. 85. American Mathematical Society, Providence (2001)

    Google Scholar 

  28. Král J.: The Fredholm method in potential theory. Trans. Am. Math. Soc. 125, 511–547 (1966)

    Article  MATH  Google Scholar 

  29. Král, J., Medková, D.:Angular limits of double layer potentials. Czechoslovak Math. J. 45 (120)(2), 267–292 (1995)

    Google Scholar 

  30. Kress R.: Linear integral equations. In: Applied Mathematical Sciences, vol. 82, 2nd edn. Springer, New York (1999)

    Google Scholar 

  31. Lauter R., Monthubert B., Nistor V.: Spectral invariance for certain algebras of pseudodifferential operators. J. Inst. Math. Jussieu 4(3), 405–442 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  32. Lewis J.: Layer potentials for elastostatics and hydrostatics in curvilinear polygonal domains. Trans. Am. Math. Soc. 320(1), 53–76 (1990)

    Article  MATH  Google Scholar 

  33. Lewis J., Parenti C.: Pseudodifferential operators of Mellin type. Comm. Partial Differ. Equ. 8(5), 477–544 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  34. Mantlik F.: Norm closure and extension of the symbolic calculus for the cone algebra. Ann. Global Anal. Geom. 13(4), 339–376 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  35. Marin L.: Boundary element-minimal error method for the Cauchy problem associated with Helmholtz-type equations. Comput. Mech. 44(2), 205–219 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  36. Maz′ya, V.: Boundary integral equations. In: Analysis, IV. Encyclopaedia Math. Sci., vol. 27, pp. 127–222. Springer, Berlin (1991)

  37. Maz’ya V., Rossmann J.: Elliptic equations in polyhedral domains. In: Mathematical Surveys and Monographs, vol. 162. American Mathematical Society, Providence (2010)

    Google Scholar 

  38. Mazzeo, R., Melrose, R.: Pseudodifferential operators on manifolds with fibred boundaries. Asian J. Math. 2 (4), 833–866 (1998). Mikio Sato: a great Japanese mathematician of the twentieth century

    Google Scholar 

  39. McLean W.: Strongly Elliptic Systems and Boundary Integral Equations. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  40. Medková, D.: The third boundary value problem in potential theory for domains with a piecewise smooth boundary. Czechoslovak Math. J. 47(122)(4), 651–679 (1997)

    Google Scholar 

  41. Medková D.: The third problem for the Laplace equation on a planar cracked domain with modified jump conditions on cracks. J. Integral Equ. Appl. 18(4), 471–507 (2006)

    Article  MATH  Google Scholar 

  42. Melrose R.: Transformation of boundary problems. Acta Math. 147(3–4), 149–236 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  43. Melrose R.: The Atiyah–Patodi–Singer index theorem. In: Research Notes in Mathematics, vol. 4. A K Peters Ltd, Wellesley (1993)

    Google Scholar 

  44. Melrose R.: Geometric scattering theory. Stanford Lectures. Cambridge University Press, Cambridge (1995)

    Google Scholar 

  45. Mitrea D., Mitrea I.: On the Besov regularity of conformal maps and layer potentials on nonsmooth domains. J. Funct. Anal. 201(2), 380–429 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  46. Mitrea D., Mitrea M., Pipher J.: Vector potential theory on nonsmooth domains in R3 and applications to electromagnetic scattering. J. Fourier Anal. Appl. 3(2), 131–192 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  47. Mitrea I.: On the spectra of elastostatic and hydrostatic layer potentials on curvilinear polygons. J. Fourier Anal. Appl. 8(5), 443–487 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  48. Mitrea, I., Mitrea, M.: The Poisson problem with mixed boundary conditions in Sobolev and Besov spaces in non-smooth domains. Trans. Am. Math. Soc. 359(9), 4143–4182 (2007, electronic)

    Google Scholar 

  49. Mitrea, M., Nistor, V.: Boundary value problems and layer potentials on manifolds with cylindrical ends. Czechoslovak Math. J. 57 (132)(4), 1151–1197 (2007)

    Google Scholar 

  50. Mitrea M., Taylor M.: Boundary layer methods for Lipschitz domains in Riemannian manifolds. J. Funct. Anal. 163(2), 181–251 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  51. Mitrea M., Taylor M.: Potential theory on Lipschitz domains in Riemannian manifolds: L P Hardy, and H ölder space results. Comm. Anal. Geom. 9(2), 369–421 (2001)

    MathSciNet  MATH  Google Scholar 

  52. Nistor V., Weinstein A., Xu P.: Pseudodifferential operators on differential groupoids. Pac. J. Math. 189(1), 117–152 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  53. Sauter, S., Schwab, C.: Boundary element methods. Springer Series in Computational Mathematics, vol. 39. Springer, Berlin (2011). Translated and expanded from the 2004 German original

  54. Schrohe, E., Schulze, B.-W.: Boundary value problems in Boutet de Monvel’s algebra for manifolds with conical singularities. I. In: Pseudo-Differential Calculus and Mathematical Physics. Math. Top., vol. 5, pp. 97–209. Akademie Verlag, Berlin (1994)

  55. Schrohe, E., Schulze, B.-W.: Boundary value problems in Boutet de Monvel’s algebra for manifolds with conical singularities. II. In: Boundary Value Problems, Schrödinger Operators, Deformation Quantization. Math. Top., vol. 8, pp. 70–205. Akademie Verlag, Berlin (1995)

  56. Schulze B.-W.: Boundary value problems and singular pseudo-differential operators. In: Pure and Applied Mathematics (New York). Wiley, Chichester (1998)

    Google Scholar 

  57. Schulze, B.-W., Sternin, B., Shatalov, V.: Differential equations on singular manifolds. Semiclassical theory and operator algebras. In: Mathematical Topics, vol. 15. Wiley-VCH, Berlin GmbH, Berlin (1998)

  58. Steinbach O., Wendland W.L.: On C. Neumann’s method for second-order elliptic systems in domains with non-smooth boundaries. J. Math. Anal. Appl. 262(2), 733–748 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  59. Taylor, M.: Pseudodifferential operators. Four Lectures at MSRI (2008)

  60. Taylor, M.: Partial differential equations. II. In: Applied Mathematical Sciences, vol. 116. Springer, New York (1996). Qualitative studies of linear equations

  61. Verchota G.: Layer potentials and regularity for the Dirichlet problem for Laplace’s equation in Lipschitz domains. J. Funct. Anal. 59(3), 572–611 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  62. Verchota G., Vogel A.: The multidirectional Neumann problem in \({\mathbb{R}^4}\). Math. Ann. 335(3), 571–644 (2006)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Qiao.

Additional information

Nistor was partially supported by the NSF Grants DMS-0713743, OCI-0749202, and DMS-1016556.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qiao, Y., Nistor, V. Single and Double Layer Potentials on Domains with Conical Points I: Straight Cones. Integr. Equ. Oper. Theory 72, 419–448 (2012). https://doi.org/10.1007/s00020-012-1947-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00020-012-1947-y

Mathematics Subject Classification (2010)

Keywords

Navigation