Skip to main content
Log in

Well-Posedness of Fractional Differential Equations on Vector-Valued Function Spaces

  • Published:
Integral Equations and Operator Theory Aims and scope Submit manuscript

Abstract

We study the well-posedness of the fractional differential equations with infinite delay (P 2): \({D^\alpha u(t)=Au(t)+\int^{t}_{-\infty}a(t-s)Au(s)ds + f(t), (0\leq t \leq2\pi)}\), where A is a closed operator in a Banach space \({X, \alpha > 0, a\in {L}^1(\mathbb{R}_+)}\) and f is an X-valued function. Under suitable assumptions on the parameter α and the Laplace transform of a, we completely characterize the well-posedness of (P 2) on Lebesgue-Bochner spaces \({L^p(\mathbb{T}, X)}\) and periodic Besov spaces \({{B} _{p,q}^s(\mathbb{T}, X)}\) .

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amann H.: Operator-valued Fourier multipliers, vector-valued Besov spaces, and applications. Math. Nach 186, 5–56 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  2. Arendt W., Bu S.: The operator-valued Marcinkiewicz multiplier theorem and maximal regularity. Math. Z 240, 311–343 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  3. Arendt W., Bu S.: Operator-valued Fourier multipliers on peoriodic Besov spaces and applications. Proc. Edinb. Math. Soc 47, 15–33 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bourgain J.: Some remarks on Banach spaces in which martingale difference sequences are unconditional. Ark. Mat. 21, 163–168 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bu S.: Well-posedness of equations with fractional derivative and periodic boundary conditions. Acta Math. Sinica (English Series) 26(7), 1223–1232 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bu, S.: Well-posedness of equations with fractional derivative via the method of sum. Acta Math. Sinica (English Series) (to appear).

  7. Bu S., Fang Y.: Maximal regularity for integro-differential equations on periodic Triebel-Lizorkin spaces. Taiwan. J. Math. 12(2), 281–292 (2008)

    MathSciNet  MATH  Google Scholar 

  8. Bu S., Kim J.: Operator-valued Fourier multipliers on periodic Triebel spaces. Acta Math. Sinica (English Series) 21(5), 1049–1056 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  9. Martinez Carracedo C., Sanz Alix, M.: The Theory of Fractional Powers of Operators. Elsevier, North-Holland Mathematics Studies 187 (2001)

  10. Clément Ph., de Pagter B., Sukochev F.A., Witvliet M.: Schauder decomposition and multiplier theorems. Studia Math. 138, 135–163 (2000)

    MathSciNet  MATH  Google Scholar 

  11. Clément, P.h., Prüss, J.: An operator-valued transference principle and maximal regularity on vector-valued L p -spaces. In: Lumer, Weis (eds.) Evolution Equations and Their Applications in Physics and Life Sciences. pp. 67–87. Marcel Dekker (2000)

  12. Denk R., Hieber M., Prüss, J.: R-boundedness, fourier multipliers and problems of elliptic and parabolic type. Mem. Am. Math. Soc. 166, 114 (2003)

    Google Scholar 

  13. Girardi M., Weis L.: Operator-valued Fourier multiplier theorems on L p (X) and geometry of Banach spaces. J. Funct. Anal. 204, 320–354 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  14. Kalton N.J., Lancien G.: A solution of the L p-maximal regularity. Math. Z. 235, 559–568 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  15. Keyantuo V., Lizama C.: Fourier multipliers and integro-differential equations in Banach spaces. J. Lond. Math. Soc. 69(3), 737–750 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  16. Keyantuo V., Lizama C.: Maximal regularity for a class of integro-differential equations with infinite delay in Banach spaces. Studia Math 168(1), 25–50 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  17. Keyantuo V., Lizama C.: A characterization of periodic solutions for time-fractional differential equations in UMD spaces and applications. Math. Nach. 284(4), 494–506 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  18. Lizama, C., Poblete, V.: Periodic solutions of fractional differential equations with delay. J. Evol. Equ. (2011)

  19. Schmeisser H.J., Triebel H.: Topics in Fourier Analysis and Function Spaces. Wiley, Chichester (1987)

    Google Scholar 

  20. Weis L.: Operator-valued Fourier multipliers and maximal L p -regularity. Math. Ann 319, 735–758 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  21. Weis L.: A new approach to maximal L p -regularity In: Lumer, W. (eds) Evolution Equations and Their Applications in Physics and Life Sciences., pp. 195–214. Marcel Dekker, New York (2000)

    Google Scholar 

  22. Zygmund A.: Trigonometric Series, vol. II. Cambridge University Press, Cambridge (1959)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shangquan Bu.

Additional information

This work was supported by the NSF of China and the Specialized Research Fund for the Doctoral Program of Higher Education.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bu, S. Well-Posedness of Fractional Differential Equations on Vector-Valued Function Spaces. Integr. Equ. Oper. Theory 71, 259–274 (2011). https://doi.org/10.1007/s00020-011-1895-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00020-011-1895-y

Mathematics Subject Classification (2010)

Keywords

Navigation