Skip to main content
Log in

Resolvent Expansions on Hybrid Manifolds

  • Published:
Integral Equations and Operator Theory Aims and scope Submit manuscript

Abstract

We study Laplace-type operators on hybrid manifolds, i.e., on configurations consisting of closed two-dimensional manifolds and one-dimensional segments. Such an operator can be constructed by using the Laplace–Beltrami operators on each component with some boundary conditions at the points of gluing. The large spectral parameter expansion of the trace of the second power of the resolvent is obtained. Some questions of the inverse spectral theory are addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ali Mehmeti, F., Von Below, J., Nicaise, S.: Partial differential equations on multistructures. In: Lecture Notes in Pure and Applied Mathematics, vol. 219. CRC Press, Boca Raton (2001)

  2. Avramidi I.G.: Green functions of higher-order differential operators. J. Math. Phys. 39, 2889–2909 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  3. Brüning J.: The resolvent expansion on singular spaces. In: Lesch, M., Gil, J.B., Grieser, D. (eds) Advances in Partial Differential Equations. Approaches to Singular Analysis., pp. 208–233. Birkhäuser, Boston (2001)

    Google Scholar 

  4. Brüning J., Geyler V.A.: Scattering on compact manifolds with infinitely thin horns. J. Math. Phys. 44, 371–405 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  5. Brüning J., Geyler V., Pankrashkin K.: Spectra of self-adjoint extensions and applications to solvable Schrödinger operators. Rev. Math. Phys. 20, 1–70 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cheeger J.: Spectral geometry of singular Riemannian spaces. J. Differ. Geom. 18, 575–657 (1984)

    MathSciNet  Google Scholar 

  7. Davies E.B.: Explicit constants for gaussian upper bounds on heat kernels. Am. J. Math. 109, 319–333 (1987)

    Article  MATH  Google Scholar 

  8. Derkach V.A., Malamud M.M.: Generalized resolvents and the boundary value problems for Hermitian operators with gaps. J. Funct. Anal. 95, 1–95 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  9. Exner, P., Keating, J.P., Kuchment, P., Sunada, T., Teplyaev, A. (eds): Analysis on graphs and applications (Proc. Symp. Pure Math., vol. 77). AMS, Providence (2008)

    Google Scholar 

  10. Exner P., Post O.: Convergence of spectra of graph-like thin manifolds. J. Geom. Phys. 54, 77–115 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  11. Gorbachuk V.I., Gorbachuk M.L.: Boundary Value Problems for Operator Differential Equations. Kluwer, Dordrecht (1991)

    Google Scholar 

  12. Gutkin B., Smilansky U.: Can one hear the shape of a graph?. J. Phys. A 34, 6061–6068 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hillairet L.: Formule de trace semi-classique sur une variété de dimension 3 avec un potentiel Dirac. Commun. PDE 27, 1751–1791 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  14. Kurasov P.: Graph Laplacians and topology. Ark. Math. 46, 95–111 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  15. Kurasov P., Nowaczyk M.: Inverse spectral problem for quantum graphs. J. Phys. A 38, 4901–4915 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  16. Polyanin A.D., Manzhirov A.D.: Handbook of Integral Equations. CRC Press, Boca Raton (1998)

    Book  MATH  Google Scholar 

  17. Roganova, S.: Direct and inverse spectral problems for hybrid manifolds. PhD thesis, Humboldt-University of Berlin (2007). http://edoc.hu-berlin.de/docviews/abstract.php?id=28330

  18. Roth J.-P.: Le spectre du Laplacien sur un graphe. In: Théorie du potentiel. Lecture Notes Math., vol. 1096, pp. 521–539. Springer, Berlin (1984)

  19. Seeley, R.T.: Complex powers of an elliptic operator. In: Singular Integrals, Proc. Sympos. Pure Math., Chicago, IL., 1966, pp. 288–307. Amer. Math. Soc., Providence (1967)

  20. Tolchennikov A.: Kernel and trace formula for the exponential of the Laplace–Beltrami operator on a decorated graph. Russ. J. Math. Phys. 15, 128–139 (2008)

    MathSciNet  MATH  Google Scholar 

  21. von Below, J.: Can one hear the shape of a network? In: [1], 19–36

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Konstantin Pankrashkin.

Additional information

Dedicated to the memory of Vladimir Geyler (1943–2007)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pankrashkin, K., Roganova, S. & Yeganefar, N. Resolvent Expansions on Hybrid Manifolds. Integr. Equ. Oper. Theory 71, 199–223 (2011). https://doi.org/10.1007/s00020-011-1888-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00020-011-1888-x

Mathematics Subject Classification (2010)

Keywords

Navigation