Skip to main content
Log in

On the Unital C*-Algebras Generated by Certain Subnormal Tuples

  • Published:
Integral Equations and Operator Theory Aims and scope Submit manuscript

Abstract

We consider an important class of subnormal operator m-tuples M p (p = m,m + 1, . . .) that is associated with a class of reproducing kernel Hilbert spaces \({{\mathcal H}_p}\) (with M m being the multiplication tuple on the Hardy space of the open unit ball \({{\mathbb B}^{2m}}\) in \({{\mathbb C}^m}\) and M m+1 being the multiplication tuple on the Bergman space of \({{\mathbb B}^{2m}}\)). Given any two C*-algebras \({\mathcal A}\) and \({\mathcal B}\) from the collection \({\{C^*({M}_p), C^*({\tilde M}_p): p \geq m\}}\) , where C*(M p ) is the unital C*-algebra generated by M p and \({C^*({\tilde M}_p)}\) the unital C*-algebra generated by the dual \({{\tilde M}_p}\) of M p , we verify that \({\mathcal A}\) and \({\mathcal B}\) are either *-isomorphic or that there is no homotopy equivalence between \({\mathcal A}\) and \({\mathcal B}\) . For example, while C*(M m ) and C*(M m+1) are well-known to be *-isomorphic, we find that \({C^*({\tilde M}_m)}\) and \({C^*({\tilde M}_{m+1})}\) are not even homotopy equivalent; on the other hand, C*(M m ) and \({C^*({\tilde M}_{m})}\) are indeed *-isomorphic. Our arguments rely on the BDF-theory and K-theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agler J.: Hypercontractions and subnormality. J. Oper. Theory 13, 203–217 (1985)

    MATH  MathSciNet  Google Scholar 

  2. Athavale A.: On the duals of subnormal tuples. Integr. Equ. Oper. Theory 12, 305–323 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  3. Athavale A.: On the intertwining of joint isometries. J. Oper. Theory 23, 339–350 (1990)

    MATH  MathSciNet  Google Scholar 

  4. Athavale A.: Model theory on the unit ball in \({{\mathbb C}^m}\) . J. Oper. Theory 27, 347–358 (1992)

    MATH  MathSciNet  Google Scholar 

  5. Athavale A.: Unitary and spherical dilations: a hypercontractive perspective. Rev. Roumaine Math. Pures Appl. 38, 387–400 (1993)

    MATH  MathSciNet  Google Scholar 

  6. Athavale A.: Quasisimilarity-invariance of joint spectra for certain subnormal tuples. Bull. Lond. Math. Soc. 40, 759–769 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  7. Bram J.: Subnormal operators. Duke Math. J. 22, 75–94 (1955)

    Article  MATH  MathSciNet  Google Scholar 

  8. Cao G.: Toeplitz algebras on strongly pseudoconvex domains. Nagoya Math. J. 185, 171–186 (2007)

    MATH  MathSciNet  Google Scholar 

  9. Coburn L.A.: Singular integral operators and Toeplitz operators on odd spheres. Indiana Univ. Math. J. 23, 433–439 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  10. Conway J.B.: The dual of a subnormal operator. J. Oper. Theory 5, 195–211 (1981)

    MATH  MathSciNet  Google Scholar 

  11. Curto R.E.: Fredholm and invertible n-tuples of operators. The deformation problem. Trans. Am. Math. Soc. 266, 129–159 (1981)

    MATH  MathSciNet  Google Scholar 

  12. Davidson K.R.: C*-Algebras by Example. Fields Institute Monographs. Amer. Math. Soc., Providence (1996)

    Google Scholar 

  13. Gleason J.: On a question of Ameer Athavale. Irish Math. Soc. Bull. 48, 31–33 (2002)

    MathSciNet  Google Scholar 

  14. Gleason J., Richter S., Sundberg C.: On the index of invariant subspaces in spaces of analytic functions in several complex variables. J. Reine Angew. Math. 587, 49–76 (2005)

    MATH  MathSciNet  Google Scholar 

  15. Ito T.: On the commutative family of subnormal operators. J. Fac. Sci. Hokkaido Univ. 14, 1–15 (1958)

    MATH  Google Scholar 

  16. Müller V., Vasilescu F.-H.: Standard models for some commuting multioperators. Proc. Am. Math. Soc. 117, 979–989 (1993)

    Article  MATH  Google Scholar 

  17. Olin R.F.: Functional relationships between a subnormal operator and its minimal normal extension. Pac. J. Math. 63, 221–229 (1976)

    MATH  MathSciNet  Google Scholar 

  18. Rordam M., Larsen F., Laustsen N.J.: An Introduction to K-Theory for C*-Algebras. Cambridge University Press, Cambridge, UK (2000)

    Google Scholar 

  19. Vasilescu F.-H.: An operator-valued Poisson kernel. J. Funct. Anal. 110, 47–72 (1992)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ameer Athavale.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Athavale, A. On the Unital C*-Algebras Generated by Certain Subnormal Tuples. Integr. Equ. Oper. Theory 68, 255–262 (2010). https://doi.org/10.1007/s00020-010-1815-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00020-010-1815-6

Mathematics Subject Classification (2010)

Keywords

Navigation