Skip to main content
Log in

Closed-Range Composition Operators on \({\mathbb{A}^2}\) and the Bloch Space

  • Published:
Integral Equations and Operator Theory Aims and scope Submit manuscript

An Erratum to this article was published on 09 March 2013

Abstract

For any analytic self-map \({\varphi}\) of {z : |z| <  1} we give four separate conditions, each of which is necessary and sufficient for the composition operator \({C_{\varphi}}\) to be closed-range on the Bloch space \({\mathcal{B}}\) . Among these conditions are some that appear in the literature, where we provide new proofs. We further show that if \({C_{\varphi}}\) is closed-range on the Bergman space \({\mathbb{A}^2}\) , then it is closed-range on \({\mathcal{B}}\) , but that the converse of this fails with a vengeance. Our analysis involves an extension of the Julia-Carathéodory Theorem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akeroyd J.R., Ghatage P.G.: Closed-range composition operators on \({\mathbb{A}^2}\) . Illinois J. Math. 52, 533–549 (2008)

    MathSciNet  Google Scholar 

  2. Arazy J., Fisher S., Peetre J.: Möbius invariant function spaces. J. Reine Angew Math. 363, 110–145 (1985)

    MathSciNet  MATH  Google Scholar 

  3. Chen H.: Boundedness from below of composition operators on the Bloch spaces (English summary). Sci. China Ser. A 46, 838–846 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  4. Cohen J.M., Colonna F.: Preimages of one-point sets of Bloch and normal functions. Mediterr. J. Math. 3, 513–532 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  5. Colonna F.: Characterisation of the isometric composition operators on the Bloch space. Bull. Austral. Math. Soc. 72, 283–290 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cowen C.C., MacCluer B.D.: Composition Operators on Spaces of Analytic Functions, Studies in Advanced Mathematics. CRC Press, Boca Raton, FL (1995)

    Google Scholar 

  7. Garnett J.B.: Bounded Analytic Functions. Academic Press, New York (1982)

    Google Scholar 

  8. Ghatage P.G., Zheng D.: Hyperbolic derivatives and generalized Schwarz-Pick estimates. Proc. Amer. Math. Soc. 132, 3309–3318 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  9. Ghatage P.G., Zheng D., Zorboska N.: Sampling sets and closed-range composition operators on the Bloch space. Proc, Amer. Math. Soc. 133, 1371–1377 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  10. Luecking D.H.: Inequalities on Bergman Spaces. Illinois J. Math. 25, 1–11 (1981)

    MathSciNet  MATH  Google Scholar 

  11. Martín M.J., Vukotić D.: Isometries of the Bloch space among the composition operators. Bull. Lond. Math. Soc. 39, 151–155 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  12. Mortini R., Nicolau A.: Frostman shifts of inner functions. J. Anal. Math. 92, 285–326 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  13. Shapiro J.H.: Composition Operators and Classical Function Theory, Universitext: Tracts in Mathematics. Springer-Verlag, New York (1993)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John R. Akeroyd.

Additional information

An erratum to this article can be found online at http://dx.doi.org/10.1007/s00020-013-2043-7.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Akeroyd, J.R., Ghatage, P.G. & Tjani, M. Closed-Range Composition Operators on \({\mathbb{A}^2}\) and the Bloch Space. Integr. Equ. Oper. Theory 68, 503–517 (2010). https://doi.org/10.1007/s00020-010-1806-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00020-010-1806-7

Mathematics Subject Classification (2010)

Keywords

Navigation