Skip to main content
Log in

Weyl’s Theorem for Functions of Operators and Approximation

  • Published:
Integral Equations and Operator Theory Aims and scope Submit manuscript

Abstract

Let \({\mathcal{H}}\) be a complex separable infinite dimensional Hilbert space. In this paper, we characterize those operators T on \({\mathcal{H}}\) satisfying that Weyl’s theorem holds for f(T) for each function f analytic on some neighborhood of σ(T). Also, it is proved that, given an operator T on \({\mathcal{H}}\) and ε > 0, there exists a compact operator K with \({\|K\| < \varepsilon}\) such that Weyl’s theorem holds for T + K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. An I.J., Han Y.M.: Weyl’s theorem for algebraically quasi-class A operators. Integr. Equ. Oper. Theory 62(1), 1–10 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  2. Apostol C.: The correction by compact perturbation of the singular behavior of operators. Rev. Roumaine Math. Pures Appl. 21(2), 155–175 (1976)

    MATH  MathSciNet  Google Scholar 

  3. Berberian S.K.: An extension of Weyl’s theorem to a class of not necessarily normal operators. Michigan Math. J. 16, 273–279 (1969)

    Article  MATH  MathSciNet  Google Scholar 

  4. Cao X.H.: Analytically Class A operators and Weyl’s theorem. J. Math. Anal. Appl. 320(2), 795–803 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  5. Chō M., Han Y.M.: Riesz idempotent and algebraically M-hyponormal operators. Integ. Equ. Oper. Theory 53(3), 311–320 (2005)

    Article  MATH  Google Scholar 

  6. Coburn L.A.: Weyl’s theorem for nonnormal operators. Michigan Math. J. 13, 285–288 (1966)

    Article  MATH  MathSciNet  Google Scholar 

  7. Conway, J.B.: A course in functional analysis, 2nd edn. Graduate Texts in Mathematics, vol. 96. Springer, New York (1990)

  8. Curto R.E., Han Y.M.: Weyl’s theorem, a-Weyl’s theorem, and local spectral theory. J. Lond. Math. Soc. (2) 67(2), 499–509 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  9. Curto R.E., Han Y.M.: Weyl’s theorem for algebraically paranormal operators. Integ. Equ. Oper. Theory 47(3), 307–314 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  10. Duggal B.P.: The Weyl spectrum of p-hyponormal operators. Integ. Equ. Oper. Theory 29(2), 197–201 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  11. Dunford, N., Schwartz, J.T.: Linear operators. Part I, Wiley Classics Library, General theory, With the assistance of Bade, W.G., Bartle, R.G., Reprint of the 1958 original. Wiley, New York (1988)

  12. Han Y.M., Lee J.I., Wang D.M.: Riesz idempotent and Weyl’s theorem for w-hyponormal operators. Integ. Equ. Oper. Theory 53(1), 51–60 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  13. Han Y.M., Lee W.Y.: Weyl’s theorem holds for algebraically hyponormal operators. Proc. Am. Math. Soc. 128(8), 2291–2296 (2000) (Electronic)

    Article  MATH  MathSciNet  Google Scholar 

  14. Herrero D.A.: The diagonal entries in the formula “quasitriangular—compact = triangular” and restrictions of quasitriangularity. Trans. Am. Math. Soc. 298(1), 1–42 (1986)

    MATH  MathSciNet  Google Scholar 

  15. Herrero D.A.: Economical compact perturbations. II. Filling in the holes. J. Oper. Theory 19(1), 25–42 (1988)

    MATH  MathSciNet  Google Scholar 

  16. Herrero, D.A.: Approximation of Hilbert space operators, vol. 1, 2nd edn. Pitman Research Notes in Mathematics Series, vol. 224. Longman Scientific & Technical, Harlow (1989)

  17. Jiang C.L., Wang Z.Y.: Structure of Hilbert Space Operators. World Scientific Publishing, Hackensack (2006)

    Book  MATH  Google Scholar 

  18. Lee W.Y., Lee S.H.: A spectral mapping theorem for the Weyl spectrum. Glasgow Math. J. 38(1), 61–64 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  19. Radjavi H., Rosenthal P.: Invariant Subspaces, 2nd edn. Dover Publications, Mineola (2003)

    MATH  Google Scholar 

  20. Schmoeger C.: On operators T such that Weyl’s theorem holds for f(T). Extracta Math. 13(1), 27–33 (1998)

    MATH  MathSciNet  Google Scholar 

  21. Weyl H.: Uber beschrankte quadratische formen, deren differenz, vollsteig ist. Rend. Circ. Mat. Palermo 27, 373–392 (1909)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sen Zhu.

Additional information

Supported by NSF of China (10971079) and the Research Foundation for Young Teachers of Department of Mathematics at Jilin University.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, C.G., Zhu, S. & Feng, Y.L. Weyl’s Theorem for Functions of Operators and Approximation. Integr. Equ. Oper. Theory 67, 481–497 (2010). https://doi.org/10.1007/s00020-010-1796-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00020-010-1796-5

Mathematics Subject Classification (2010)

Keywords

Navigation