Skip to main content
Log in

Closed Range Property for Holomorphic Semi-Fredholm Functions

  • Published:
Integral Equations and Operator Theory Aims and scope Submit manuscript

Abstract

Given Banach spaces X and Y, we show that, for each operator-valued analytic map \({\alpha \in \mathcal O (D,\mathcal L(Y,X))}\) satisfying the finiteness condition \({\dim (X/\alpha (z)Y) < \infty}\) pointwise on an open set D in \({\mathbb {C}^n}\) , the induced multiplication operator \({\mathcal O(U,Y) \stackrel{\alpha}{\longrightarrow} \mathcal O (U,X)}\) has closed range on each Stein open set \({U \subset D}\) . As an application we deduce that the generalized range \({{\rm R}^{\infty}(T) = \bigcap_{k \geq 1}\sum_{| \alpha | = k} T^{\alpha}X}\) of a commuting multioperator \({T \in \mathcal L(X)^n}\) with \({\dim(X/\sum_{i=1}^n T_iX) < \infty}\) can be represented as a suitable spectral subspace.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Eschmeier J.: Are commuting systems of decomposable operators decomposable?. J. Oper. Theory 12, 213–219 (1984)

    MATH  MathSciNet  Google Scholar 

  2. Eschmeier J.: On the essential spectrum of Banach space operators. Proc. Edinb. Math. Soc. 43, 511–528 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  3. Eschmeier J.: Samuel multiplicity for several commuting operators. J. Oper. Theory 60, 399–414 (2008)

    MATH  MathSciNet  Google Scholar 

  4. Eschmeier, J., Putinar, M.: Spectral Decompositions and Analytic Sheaves. London Mathematical Society Monographs, New Series, vol. 10, Clarendon Press, Oxford (1996)

  5. Faas, D.: Zur Darstellungs- und Spektraltheorie für nichtvertauschende Operatortupel, Dissertation, Saarbrücken, 2008

  6. Fang X.: The Fredholm index of a pair of commuting operators II. J. Funct. Anal. 256, 1669–1692 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  7. Grauert, H., Remmert, R.: Theorie der Steinschen Räume, Grundlehren der mathematischen Wissenschaften. vol. 227, Springer, Berlin (1977)

  8. Kaballo W.: Holomorphe Semi-Fredholmfunktionen ohne komplementierte Kerne bzw. Bilder. Math. Nachrichten 91, 327–335 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  9. Laursen, K.B., Neumann, M.M.: An Introduction to Local Spectral Theory. London Mathematical Society Monographs, vol. 20, The Clarendon Press, New York (2000)

  10. Leiterer J.: Banach coherent analytic Fréchet sheaves. Math. Nachrichten 85, 91–109 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  11. Mantlik, F.: Parameterabhängige lineare Gleichungen in Banach- und in Frécheträumen, Dissertation, Universität Dortmund, 1988

  12. Markoe A.: Analytic families of differential complexes. J. Funct. Anal. 9, 181–188 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  13. Miller T.L., Miller V.G., Neumann M.M.: The Kato-type spectrum and local spectral theory. Czech. Math. J. 57, 831–842 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  14. Miller T.L., Müller V.: The closed range property for Banach space operators. Glasgow Math. J. 50, 17–26 (2008)

    Article  MATH  Google Scholar 

  15. Northcott D.G.: Lessons on Rings, Modules and Multiplicities. Cambridge University Press, London (1968)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dominik Faas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eschmeier, J., Faas, D. Closed Range Property for Holomorphic Semi-Fredholm Functions. Integr. Equ. Oper. Theory 67, 365–375 (2010). https://doi.org/10.1007/s00020-010-1786-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00020-010-1786-7

Mathematics Subject Classification (2000)

Keywords

Navigation