Skip to main content
Log in

The Lower Weyl Spectrum of a Positive Operator

  • Published:
Integral Equations and Operator Theory Aims and scope Submit manuscript

Abstract

For the lower Weyl spectrum

$$\sigma_{\rm w}^-(T) = \bigcap_{0 \le K \in \mathcal{K}(E) \le T} \sigma(T - K),$$

where T is a positive operator on a Banach lattice E, the conditions for which the equality \({\sigma_{\rm w}^-(T) = \sigma_{\rm w}^-(T^*)}\) holds, are established. In particular, it is true if E has order continuous norm. An example of a weakly compact positive operator T on such that the spectral radius \({r(T) \in \sigma_{\rm w}^-(T) {\setminus} (\sigma_{\rm f}(T) \cup \sigma_{\rm w}^-(T^*))}\) , where σ f(T) is the Fredholm spectrum, is given. The conditions which guarantee the order continuity of the residue T −1 of the resolvent R(., T) of an order continuous operator T ≥ 0 at \({r(T) \notin \sigma_{\rm f}(T)}\) , are discussed. For example, it is true if T is o-weakly compact. It follows from the proven results that a Banach lattice E admitting an order continuous operator T ≥ 0, \({r(T) \notin \sigma_{\rm f}(T)}\) , can not have the trivial band \({E_n^\sim}\) of order continuous functionals in general. It is obtained that a non-zero order continuous operator T : EF can not be approximated in the r-norm by the operators from \({E_\sigma^\sim \otimes F}\) , where F is a Banach lattice, \({E_\sigma^\sim}\) is a disjoint complement of the band \({E_n^\sim}\) of E*.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abramovich, Y.A., Aliprantis, C.D.: An invitation to operator theory. In: Graduate Studies in Mathematics, vol. 50 (2002)

  2. Abramovich Y.A., Sirotkin G.: On order convergence of nets. Positivity 9(3), 287–292 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  3. Aiena P.: Fredholm and Local Spectral Theory, with Applications to Multipliers. Kluwer, Dordrecht (2004)

    MATH  Google Scholar 

  4. Alekhno E.A.: Some special properties of Mazurs’ functionals, I. Trans. Math. Inst. Nats. Akad. Navuk Belarusi 12(1), 17–20 (2004) (Russian)

    MathSciNet  Google Scholar 

  5. Alekhno, E.A. Some properties of the weak topology in the space \({\mathcal{L}_\infty}\) . Vestsi Nats. Akad. Navuk Belarusi. Ser. Fiz.-Mat. Navuk (3), 31–37 (2006) (Russian)

  6. Alekhno E.A.: Some properties of essential spectra of a positive operator. Positivity 11(3), 375–386 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  7. Alekhno E.A.: Some properties of essential spectra of a positive operator, II. Positivity 13(1), 3–20 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  8. Aliprantis C.D., Burkinshaw O.: Positive Operators. Academic Press, New York (1985)

    MATH  Google Scholar 

  9. Arendt W.: On the o-spectrum of regular operators and the spectrum of measures. Math. Z. 178(2), 271–287 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  10. Caselles V.: On the peripheral spectrum of positive operators. Isr. J. Math. 58(2), 144–160 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  11. Dunford N., Schwartz J.T.: Linear Operators Part 1: General Theory. Wiley, New York (1958)

    Google Scholar 

  12. Grobler J.J., Reinecke C.J.: On principal T-bands in a Banach lattice. Integral Equ. Oper. Theory 28(4), 444–465 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  13. Kitover A.K., Wickstead A.W.: Operator norm limits of order continuous operators. Positivity 9(2), 341–355 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  14. Lozanovsky G.Y.: On projections on some Banach lattices. Mat. Zametki 4(1), 41–44 (1968) (Russian)

    MathSciNet  Google Scholar 

  15. Meyer-Nieberg P.: Banach Lattices. Springer-Verlag, Berlin (1991)

    MATH  Google Scholar 

  16. Schaefer H.H.: Banach Lattices and Positive Operators. Springer-Verlag, Berlin (1974)

    MATH  Google Scholar 

  17. Wickstead A.W.: Converses for the Dodds-Fremlin and Kalton-Saab theorems. Math. Proc. Cambr. Philos. Soc. 120(1), 175–179 (1996)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Egor A. Alekhno.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alekhno, E.A. The Lower Weyl Spectrum of a Positive Operator. Integr. Equ. Oper. Theory 67, 301–326 (2010). https://doi.org/10.1007/s00020-010-1758-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00020-010-1758-y

Mathematics Subject Classification (2000)

Keywords

Navigation