Skip to main content
Log in

Did life begin in hot water?

  • Visions & Reflections
  • Published:
Cellular and Molecular Life Sciences CMLS Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Joyce G. F. (1989) RNA evolution and the origins of life. Nature 116: 217–224

    Article  Google Scholar 

  2. Stetter K. O. (1994) The lesson of archaebacteria. In: Early Life on Earth: Nobel Symposium No. 84, pp. 114–122, Bengtson S. (ed.), Columbia University Press, New York

    Google Scholar 

  3. Pace N. R. (1991) A hot primordial setting. Cell 65: 531–533

    Article  CAS  PubMed  Google Scholar 

  4. Miller S. L. and Bada J. L. (1988) Submarine hot spring and the origin of life. Nature 334: 609–611

    Article  CAS  PubMed  Google Scholar 

  5. Miller S. and Lazcano A. (1995) J. Mol. Evol. 41: 689–692

    Article  CAS  PubMed  Google Scholar 

  6. Forterre P. (1992) New hypotheses about the origins of viruses, prokaryotes and eukaryotes. In: Frontiers of Life, pp. 221–234, Trân Thanh Vân J. K., Mounolou J. C., Shneider J. and McKay C. (eds), Editions Frontières, Gif-sur-Yvette

    Google Scholar 

  7. Miller S. L. and Lazcano A. (1996) The origin and early evolution of life: prebiotic chemistry, the pre-RNA world and time. Cell 85: 793–798

    Article  PubMed  Google Scholar 

  8. Forterre P. (1996) A hot topic: the origin of hyperthermophiles. Cell 85: 789–792

    Article  CAS  PubMed  Google Scholar 

  9. Nitta I., Kamada Y., Noda H., Ueda T. and Watanabe K. (1998) Reconstitution of peptide bond formation with Escherichia coli 23S ribosomal RNA domains. Science 281: 666–669

    Article  CAS  PubMed  Google Scholar 

  10. Barros J. A. (1998) Do the geological and geochemical records of early Earth support the prediction from global phylogenetic models of a thermophilic cenancestor? In: Thermophiles, the Keys to Molecular Evolution and the Origin of Life? pp. 3–18, Wiegel J. and Adams M. W. W. (eds), Taylor and Francis, London

    Google Scholar 

  11. Woese C. R., Kandler O. and Wheelis M. L. (1990) Towards a natural system of organisms: proposals for the domains Archaea, Bacteria and Eucarya. Proc. Natl. Acad. Sci. USA 87: 4576–4579

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Forterre P., Benachenou N., Confalonieri F., Duguet M., Elie C. and Labedan B. (1993) The nature of the last universal ancestor and the root of the tree of life, still open questions. Biosystem 28: 15–32

    Article  Google Scholar 

  13. Forterre P., Confalonieri F., Charbonnier F. and Duguet M. (1995) Speculations on the origin of life and thermophily: review of available information on reverse gyrase suggest that hyperthermophilic procaryotes are not so primitive. Origin of Life 25: 235–249

    Article  CAS  Google Scholar 

  14. Emblay T. M. and Hirt R. P. (1998) Early branching eukaryotes? Curr. Opin. Gen. Dev. 8: 624–629

    Article  Google Scholar 

  15. Klenk H. P., Palm P. and Zillig W. (1994) System. Appl. Microbiol. 16: 638–647

    Article  CAS  Google Scholar 

  16. Forterre P. (1998) Were our ancestors actually hyperthermophilis? Viewpoint of a devil advocate. In: Thermophiles, the Keys to Molecular Evolution and the Origin of Life? pp. 137–146, Wiegel J. and Adams M. W. W. (eds), Taylor and Francis, London

    Google Scholar 

  17. Galtier N., Tourasse N. and Gouy M. (1999) The last common ancestor to extant life forms was not hyperthermophilic. Science 283: 220–221

    Article  CAS  PubMed  Google Scholar 

  18. Langworthy T. A. and Pond J. L. (1986). In: Thermophiles, pp. 107–136, Brock TD, Wiley-Interscience Publications, New York

  19. Confalonieri F., Elie C., Nadal M., Bouthier de la Tour C., Forterre P. and Duguret M. (1993) Reverse gyrase: a helicaselike domain and a type I DNA topoisomerase in the same polypeptide. Proc. Natl. Acad. Sci. USA 90: 4735–4757

    Article  Google Scholar 

  20. Aravind L., Tatusov R. L., Wolf Y. I. and Koonin E. V. (1998) Evidence for massive gene exchange between archaeal and bacterial hyperthermophiles. Trends Genet. 14: 442–444

    Article  CAS  PubMed  Google Scholar 

  21. Shock E. L., McCollom T. and Schulte M. T. (1998) The emergence of metabolism from within hydrothermal systems. In: Thermophiles, the Keys to molecular evolution and the origin of life? pp. 59–76, Wiegel J. and Adams M. W. W. (eds), Taylor and Francis, London

    Google Scholar 

  22. Wächtershäuser G. (1992) Groundworks for an evolutionary biochemistry: the iron-sulfur world. Progr. Biophys. Mol. Biol. 58: 85–201

    Article  Google Scholar 

  23. Huber C. and Wächtershäuser G. (1997) Activated acetic acid by carbon fixation on (Fe,Ni)S under primordial conditions. Science 276: 245–247

    Article  CAS  PubMed  Google Scholar 

  24. Orgel L. (1998) The origin of life — a review of facts and speculations. Trends Biochem. Sci. 23: 491–495

    Article  CAS  PubMed  Google Scholar 

  25. Brinkmann H. and Philippe H. Archaea sister-group of Bacteria? Indications from tree reconstruction artefacts in ancient phylogenies. Mol. Biol. Evol., in press

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Forterre.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Forterre, P. Did life begin in hot water?. CMLS, Cell. Mol. Life Sci. 55, 687–690 (1999). https://doi.org/10.1007/s000180050326

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s000180050326

Navigation