Skip to main content
Log in

Tubular TMEM16A promotes tubulointerstitial fibrosis by suppressing PGC-1α-mediated mitochondrial homeostasis in diabetic kidney disease

  • Original Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Tubulointerstitial fibrosis (TIF) plays a crucial role in the progression of diabetic kidney disease (DKD). However, the underlying molecular mechanisms remain obscure. The present study aimed to examine whether transmembrane member 16A (TMEM16A), a Ca2+-activated chloride channel, contributes to the development of TIF in DKD. Interestingly, we found that TMEM16A expression was significantly up-regulated in tubule of murine model of DKD, which was associated with development of TIF. In vivo inhibition of TMEM16A channel activity with specific inhibitors Ani9 effectively protects against TIF. Then, we found that TMEM16A activation induces tubular mitochondrial dysfunction in in vivo and in vitro models, with the evidence of the TMEM16A inhibition with specific inhibitor. Mechanically, TMEM16A mediated tubular mitochondrial dysfunction through inhibiting PGC-1α, whereas overexpression of PGC-1α could rescue the changes. In addition, TMEM16A-induced fibrogenesis was dependent on increased intracellular Cl, and reducing intracellular Cl significantly blunted high glucose-induced PGC-1α and profibrotic factors expression. Taken together, our studies demonstrated that tubular TMEM16A promotes TIF by suppressing PGC-1α-mediated mitochondrial homeostasis in DKD. Blockade of TMEM16A may serve as a novel therapeutic approach to ameliorate TIF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of data and materials

The data that support the findings of this study are available on request from the corresponding author.

References

  1. Barrera-Chimal J, Lima-Posada I, Bakris GL, Jaisser F (2022) Mineralocorticoid receptor antagonists in diabetic kidney disease-mechanistic and therapeutic effects. Nat Rev Nephrol 18(1):56–70

    Article  CAS  PubMed  Google Scholar 

  2. Rayego-Mateos S, Rodrigues-Diez RR, Fernandez-Fernandez B, Mora-Fernández C, Marchant V, Donate-Correa J, Navarro-González JF, Ortiz A, Ruiz-Ortega M (2023) Targeting inflammation to treat diabetic kidney disease: the road to 2030. Kidney Int 103(2):282–296

    Article  CAS  PubMed  Google Scholar 

  3. Alicic RZ, Rooney MT, Tuttle KR (2017) Diabetic kidney disease: challenges, progress, and possibilities. Clin J Am Soc Nephrol 12(12):2032–2045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Cui X, Shi E, Li J, Li Y, Qiao Z, Wang Z, Liu M, Tang W, Sun Y, Zhang Y, Xie Y, Zhen J, Wang X, Yi F (2022) GPR87 promotes renal tubulointerstitial fibrosis by accelerating glycolysis and mitochondrial injury. Free Radic Biol Med 189:58–70

    Article  CAS  PubMed  Google Scholar 

  5. Chen J, Wang X, He Q, Bulus N, Fogo AB, Zhang MZ, Harris RC (2020) YAP activation in renal proximal tubule cells drives diabetic renal interstitial fibrogenesis. Diabetes 69(11):2446–2457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Liu Y, Liu Z, Wang K (2021) The Ca2+-activated chloride channel ANO1/TMEM16A: an emerging therapeutic target for epithelium-originated diseases? Acta Pharm Sin B 11(6):1412–1433

    Article  PubMed  Google Scholar 

  7. Huang F, Rock JR, Harfe BD, Cheng T, Huang X, Jan YN, Jan LY (2009) Studies on expression and function of the TMEM16A calcium-activated chloride channel. Proc Natl Acad Sci USA 106(50):21413–21418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Faria D, Rock JR, Romao AM, Schweda F, Bandulik S, Witzgall R, Schlatter E, Heitzmann D, Pavenstädt H, Herrmann E, Kunzelmann K, Schreiber R (2014) The calcium-activated chloride channel Anoctamin 1 contributes to the regulation of renal function. Kidney Int 85(6):1369–1381

    Article  CAS  PubMed  Google Scholar 

  9. Cabrita I, Kraus A, Scholz JK, Skoczynski K, Schreiber R, Kunzelmann K, Buchholz B (2020) Cyst growth in ADPKD is prevented by pharmacological and genetic inhibition of TMEM16A in vivo. Nat Commun 11(1):4320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Yao L, Liang X, Qiao Y, Chen B, Wang P, Liu Z (2022) Mitochondrial dysfunction in diabetic tubulopathy. Metabolism 131:155195

    Article  CAS  PubMed  Google Scholar 

  11. Xie Y, Jing E, Cai H, Zhong F, Xiao W, Gordon RE, Wang L, Zheng YL, Zhang A, Lee K, He JC (2022) Reticulon-1A mediates diabetic kidney disease progression through endoplasmic reticulum-mitochondrial contacts in tubular epithelial cells. Kidney Int 102(2):293–306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Fontecha-Barriuso M, Martin-Sanchez D, Martinez-Moreno JM, Monsalve M, Ramos AM, Sanchez-Niño MD, Ruiz-Ortega M, Ortiz A, Sanz AB (2020) The role of PGC-1α and mitochondrial biogenesis in kidney diseases. Biomolecules 10(2):347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Gewin LS (2018) Renal fibrosis: primacy of the proximal tubule. Matrix Biol 68–69:248–262

    Article  PubMed  PubMed Central  Google Scholar 

  14. Crottès D, Jan LY (2019) The multifaceted role of TMEM16A in cancer. Cell Calcium 82:102050

    Article  PubMed  PubMed Central  Google Scholar 

  15. Cil O, Chen X, Askew Page HR, Baldwin SN, Jordan MC, Myat Thwe P, Anderson MO, Haggie PM, Greenwood IA, Roos KP, Verkman AS (2021) A small molecule inhibitor of the chloride channel TMEM16A blocks vascular smooth muscle contraction and lowers blood pressure in spontaneously hypertensive rats. Kidney Int 100(2):311–320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Korte N, Ilkan Z, Pearson CL, Pfeiffer T, Singhal P, Rock JR, Sethi H, Gill D, Attwell D, Tammaro P (2022) The Ca2+-gated channel TMEM16A amplifies capillary pericyte contraction and reduces cerebral blood flow after ischemia. J Clin Invest 132(9):e154118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Cabrita I, Buchholz B, Schreiber R, Kunzelmann K (2020) TMEM16A drives renal cyst growth by augmenting Ca2+ signaling in M1 cells. J Mol Med (Berl) 98(5):659–671

    Article  CAS  PubMed  Google Scholar 

  18. Li XL, Liu J, Chen XS, Cheng LM, Liu WL, Chen XF, Li YJ, Guan YY, Zeng X, Du YH (2022) Blockade of TMEM16A protects against renal fibrosis by reducing intracellular Cl- concentration. Br J Pharmacol 179(12):3043–3060

    Article  CAS  PubMed  Google Scholar 

  19. Mohandes S, Doke T, Hu H, Mukhi D, Dhillon P, Susztak K (2023) Molecular pathways that drive diabetic kidney disease. J Clin Invest 133(4):e165654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Tuttle KR, Agarwal R, Alpers CE, Bakris GL, Brosius FC, Kolkhof P, Uribarri J (2022) Molecular mechanisms and therapeutic targets for diabetic kidney disease. Kidney Int 102(2):248–260

    Article  CAS  PubMed  Google Scholar 

  21. Galietta LJV (2022) TMEM16A (ANO1) as a therapeutic target in cystic fibrosis. Curr Opin Pharmacol 64:102206

    Article  CAS  PubMed  Google Scholar 

  22. Li X, Xu L, Hou X, Geng J, Tian J, Liu X, Bai X (2019) Advanced oxidation protein products aggravate tubulointerstitial fibrosis through protein kinase C-dependent mitochondrial injury in early diabetic nephropathy. Antioxid Redox Signal 30(9):1162–1185

    Article  CAS  PubMed  Google Scholar 

  23. Forbes JM, Thorburn DR (2018) Mitochondrial dysfunction in diabetic kidney disease. Nat Rev Nephrol 14(5):291–312

    Article  CAS  PubMed  Google Scholar 

  24. Li XL, Liu XW, Liu WL, Lin YQ, Liu J, Peng YS, Cheng LM, Du YH (2023) Inhibition of TMEM16A improves cisplatin-induced acute kidney injury via preventing DRP1-mediated mitochondrial fission. Acta Pharmacol Sin (Online ahead of print)

  25. Lin J, Wu PH, Tarr PT, Lindenberg KS, St-Pierre J, Zhang CY, Mootha VK, Jäger S, Vianna CR, Reznick RM, Cui L, Manieri M, Donovan MX, Wu Z, Cooper MP, Fan MC, Rohas LM, Zavacki AM, Cinti S, Shulman GI, Lowell BB, Krainc D, Spiegelman BM (2004) Defects in adaptive energy metabolism with CNS-linked hyperactivity in PGC-1alpha null mice. Cell 119(1):121–135

    Article  CAS  PubMed  Google Scholar 

  26. Nam BY, Jhee JH, Park J, Kim S, Kim G, Park JT, Yoo TH, Kang SW, Yu JW, Han SH (2022) PGC-1α inhibits the NLRP3 inflammasome via preserving mitochondrial viability to protect kidney fibrosis. Cell Death Dis 13(1):31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Han SH, Wu MY, Nam BY, Park JT, Yoo TH, Kang SW, Park J, Chinga F, Li SY, Susztak K (2017) PGC-1α protects from notch-induced kidney fibrosis development. J Am Soc Nephrol 28(11):3312–3322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Qin X, Jiang M, Zhao Y, Gong J, Su H, Yuan F, Fang K, Yuan X, Yu X, Dong H, Lu F (2020) Berberine protects against diabetic kidney disease via promoting PGC-1α-regulated mitochondrial energy homeostasis. Br J Pharmacol 177(16):3646–3661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Huang W, Tan M, Wang Y, Liu L, Pan Y, Li J, Ouyang M, Long C, Qu X, Liu H, Liu C, Wang J, Deng L, Xiang Y, Qin X (2020) Increased intracellular Cl- concentration improves airway epithelial migration by activating the RhoA/ROCK Pathway. Theranostics 10(19):8528–8540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Bazúa-Valenti S, Chávez-Canales M, Rojas-Vega L, González-Rodríguez X, Vázquez N, Rodríguez-Gama A, Argaiz ER, Melo Z, Plata C, Ellison DH, García-Valdés J, Hadchouel J, Gamba G (2015) The effect of WNK4 on the Na+-Cl- cotransporter is modulated by intracellular chloride. J Am Soc Nephrol 26(8):1781–1786

    Article  PubMed  Google Scholar 

  31. Yang H, Huang LY, Zeng DY, Huang EW, Liang SJ, Tang YB, Su YX, Tao J, Shang F, Wu QQ, Xiong LX, Lv XF, Liu J, Guan YY, Zhou JG (2012) Decrease of intracellular chloride concentration promotes endothelial cell inflammation by activating nuclear factor-κB pathway. Hypertension 60(5):1287–1293

    Article  CAS  PubMed  Google Scholar 

  32. Sridhar VS, Yau K, Benham JL, Campbell DJT, Cherney DZI (2022) Sex and gender related differences in diabetic kidney disease. Semin Nephrol 42(2):170–184

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by the grants from the National Natural Science Foundation of China (82000648); the Natural Science Foundation of Jiangsu Province (BK20200363); the Outstanding Youth Cultivation Foundation of Southeast University (2021ZDYYYQPY07); the Fundamental Research Funds for the Central Universities (2242023K40046); the Innovative and Entrepreneurial Talent (Doctor) of Jiangsu Province; the Natural Science Foundation of Shandong Province (ZR2022MH161); the Science and Technology Planning Projects of Qingdao (2021-WJZD189 and 16-6-2-20-snh); and the Clinical Medicine + X Project of Affiliated Hospital of Qingdao University (3390).

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

JJL, and JYL designed the study, carried out the experiments, and analyzed the data; JXL, CCL, YZ, and AQZ analyzed the data, made the figures, and edited the paper; ZLL, RXM, and HL analyzed the data, made the figures, and wrote and edited the paper. All authors approved the final version of the paper.

Corresponding authors

Correspondence to Hong Liu, Rui-Xia Ma or Zuo-Lin Li.

Ethics declarations

Conflict of interest

The authors declare no competing financial interests.

Ethical approval

All animal experimental procedures were approved by the Ethics Review Committee for Animal Experimentation of Southeast University and were performed in accordance with the guidelines established by the National Institutes of Health for the Care and Use of Laboratory Animals.

Consent to participate

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 195 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ji, JL., Li, JY., Liang, JX. et al. Tubular TMEM16A promotes tubulointerstitial fibrosis by suppressing PGC-1α-mediated mitochondrial homeostasis in diabetic kidney disease. Cell. Mol. Life Sci. 80, 347 (2023). https://doi.org/10.1007/s00018-023-05000-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00018-023-05000-6

Keywords

Navigation