Skip to main content
Log in

Metabolic and cell cycle shift induced by the deletion of Dnm1l attenuates the dissolution of pluripotency in mouse embryonic stem cells

  • Original Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Mitochondria are versatile organelles that continuously change their morphology via fission and fusion. However, the detailed functions of mitochondrial dynamics-related genes in pluripotent stem cells remain largely unclear. Here, we aimed to determine the effects on energy metabolism and differentiation ability of mouse embryonic stem cells (ESCs) following deletion of the mitochondrial fission-related gene Dnml1. Resultant Dnm1l−/− ESCs maintained major pluripotency characteristics. However, Dnm1l−/− ESCs showed several phenotypic changes, including the inhibition of differentiation ability (dissolution of pluripotency). Notably, Dnm1l−/− ESCs maintained the expression of the pluripotency marker Oct4 and undifferentiated colony types upon differentiation induction. RNA sequencing analysis revealed that the most frequently differentially expressed genes were enriched in the glutathione metabolic pathway. Our data suggested that differentiation inhibition of Dnm1l−/− ESCs was primarily due to metabolic shift from glycolysis to OXPHOS, G2/M phase retardation, and high level of Nanog and 2-cell-specific gene expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of data and material

Data will be available on reasonable request.

References

  1. Baek SH, Park SJ, Jeong JI et al (2017) Inhibition of Drp1 ameliorates synaptic depression, Aβ deposition, and cognitive impairment in an Alzheimer’s disease model. J Neurosci 37:5099–5110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Boroviak T, Loos R, Bertone P et al (2014) The ability of inner-cell-mass cells to self-renew as embryonic stem cells is acquired following epiblast specification. Nat Cell Biol 16:513–525

    Article  Google Scholar 

  3. Brand MD (2010) The sites and topology of mitochondrial superoxide production. Exp Gerontol 45:466–472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Chan DC (2012) Fusion and fission: interlinked processes critical for mitochondrial health. Annu Rev Genet 46:265–287

    Article  CAS  PubMed  Google Scholar 

  5. Chang DT, Honick AS, Reynolds IJ (2006) Mitochondrial trafficking to synapses in cultured primary cortical neurons. J Neurosci 26:7035–7045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Choi HW, Joo JY, Hong YJ et al (2016) Distinct enhancer activity of Oct4 in naive and primed mouse pluripotency. Stem Cell Rep 7:911–926

    Article  CAS  Google Scholar 

  7. Choi J, Seo BJ, La H et al (2020) Comparative analysis of the mitochondrial morphology, energy metabolism, and gene expression signatures in three types of blastocyst-derived stem cells. Redox Biol 30:101437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Chung S, Arrell DK, Faustino RS et al (2010) Glycolytic network restructuring integral to the energetics of embryonic stem cell cardiac differentiation. J Mol Cell Cardiol 48:725–734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Coronado D, Godet M, Bourillot P-Y et al (2013) A short G1 phase is an intrinsic determinant of naive embryonic stem cell pluripotency. Stem Cell Res 10:118–131

    Article  PubMed  Google Scholar 

  10. Dan J, Rousseau P, Hardikar S et al (2017) Zscan4 inhibits maintenance DNA methylation to facilitate telomere elongation in mouse embryonic stem cells. Cell Rep 20:1936–1949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Devoto VMP, Falzone TL (2017) Mitochondrial dynamics in Parkinson’s disease: a role for α-synuclein? Dis Model Mech 10:1075–1087

    Article  Google Scholar 

  12. Evans MJ, Kaufman MH (1981) Establishment in culture of pluripotential cells from mouse embryos. Nature 292:154–156

    Article  CAS  PubMed  Google Scholar 

  13. Facucho-Oliveira J, John JS (2009) The relationship between pluripotency and mitochondrial DNA proliferation during early embryo development and embryonic stem cell differentiation. Stem Cell Rev Rep 5:140–158

    Article  CAS  PubMed  Google Scholar 

  14. Facucho-Oliveira JM, Alderson J, Spikings EC et al (2007) Mitochondrial DNA replication during differentiation of murine embryonic stem cells. J Cell Sci 120:4025–4034

    Article  CAS  PubMed  Google Scholar 

  15. Ferguson SM, De Camilli P (2012) Dynamin, a membrane-remodelling GTPase. Nat Rev Mol Cell Biol 13:75–88

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Folmes CD, Dzeja PP, Nelson TJ et al (2012) Metabolic plasticity in stem cell homeostasis and differentiation. Cell Stem Cell 11:596–606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Folmes CD, Nelson TJ, Martinez-Fernandez A et al (2011) Somatic oxidative bioenergetics transitions into pluripotency-dependent glycolysis to facilitate nuclear reprogramming. Cell Metab 14:264–271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Giacomello M, Pyakurel A, Glytsou C et al (2020) The cell biology of mitochondrial membrane dynamics. Nat Rev Mol Cell Biol 21:204–224

    Article  CAS  PubMed  Google Scholar 

  19. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674

    Article  CAS  PubMed  Google Scholar 

  20. Heurtier V, Owens N, Gonzalez I et al (2019) The molecular logic of Nanog-induced self-renewal in mouse embryonic stem cells. Nat Commun 10:1–15

    Article  CAS  Google Scholar 

  21. Ishihara N, Nomura M, Jofuku A et al (2009) Mitochondrial fission factor Drp1 is essential for embryonic development and synapse formation in mice. Nat Cell Biol 11:958–966

    Article  CAS  PubMed  Google Scholar 

  22. Kansanen E, Kuosmanen SM, Leinonen H et al (2013) The Keap1-Nrf2 pathway: mechanisms of activation and dysregulation in cancer. Redox Biol 1:45–49

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kasai S, Shimizu S, Tatara Y et al (2020) Regulation of Nrf2 by mitochondrial reactive oxygen species in physiology and pathology. Biomolecules 10:320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kauffman ME, Kauffman MK, Traore K et al (2016) MitoSOX-based flow cytometry for detecting mitochondrial ROS. React Oxyg Species (Apex, NC) 2:361

    Google Scholar 

  25. Ko E, Seo HW, Jung G (2018) Telomere length and reactive oxygen species levels are positively associated with a high risk of mortality and recurrence in hepatocellular carcinoma. Hepatology 67:1378–1391

    Article  CAS  PubMed  Google Scholar 

  26. Kondoh H, Lleonart ME, Nakashima Y et al (2007) A high glycolytic flux supports the proliferative potential of murine embryonic stem cells. Antioxid Redox Signal 9:293–299

    Article  CAS  PubMed  Google Scholar 

  27. Kowaltowski AJ, De Souza-Pinto NC, Castilho RF et al (2009) Mitochondria and reactive oxygen species. Free Radical Biol Med 47:333–343

    Article  CAS  Google Scholar 

  28. Lapasset L, Milhavet O, Prieur A et al (2011) Rejuvenating senescent and centenarian human cells by reprogramming through the pluripotent state. Genes Dev 25:2248–2253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Li Z, Okamoto K-I, Hayashi Y et al (2004) The importance of dendritic mitochondria in the morphogenesis and plasticity of spines and synapses. Cell 119:873–887

    Article  CAS  PubMed  Google Scholar 

  30. Lonergan T, Bavister B, Brenner C (2007) Mitochondria in stem cells. Mitochondrion 7:289–296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ma Q (2013) Role of nrf2 in oxidative stress and toxicity. Annu Rev Pharmacol Toxicol 53:401–426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Mandal S, Freije WA, Guptan P et al (2010) Metabolic control of G1–S transition: cyclin E degradation by p53-induced activation of the ubiquitin–proteasome system. J Cell Biol 188:473–479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Martello G, Smith A (2014) The nature of embryonic stem cells. Annu Rev Cell Dev Biol 30:647–675

    Article  CAS  PubMed  Google Scholar 

  34. Mitra K, Wunder C, Roysam B et al (2009) A hyperfused mitochondrial state achieved at G1–S regulates cyclin E buildup and entry into S phase. Proc Natl Acad Sci 106:11960–11965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Morales PE, Arias-Durán C, Ãvalos-Guajardo Y et al (2020) Emerging role of mitophagy in cardiovascular physiology and pathology. Mol Aspects Med 71:100822

    Article  PubMed  Google Scholar 

  36. Mullarky E, Cantley LC (2015) Diverting glycolysis to combat oxidative stress. Innov Med. 3–23

  37. Murnane JP (2012) Telomere dysfunction and chromosome instability. Mutat Res Fundam Mol Mech Mutagen 730:28–36

    Article  CAS  Google Scholar 

  38. Nakai-Futatsugi Y, Niwa H (2016) Zscan4 is activated after telomere shortening in mouse embryonic stem cells. Stem Cell Rep 6:483–495

    Article  CAS  Google Scholar 

  39. Namani A, Rahaman MM, Chen M et al (2018) Gene-expression signature regulated by the KEAP1-NRF2-CUL3 axis is associated with a poor prognosis in head and neck squamous cell cancer. BMC Cancer 18:46

    Article  PubMed  PubMed Central  Google Scholar 

  40. Oliver D, Reddy PH (2019) Dynamics of Dynamin-related protein 1 in Alzheimer’s disease and other neurodegenerative diseases. Cells 8:961

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Otera H, Ishihara N, Mihara K (2013) New insights into the function and regulation of mitochondrial fission. Biochim Biophys Acta (BBA) Mol Cell Res 1833:1256–1268

    Article  CAS  Google Scholar 

  42. Pauklin S, Vallier L (2013) The cell-cycle state of stem cells determines cell fate propensity. Cell 155:135–147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Qian W, Choi S, Gibson GA et al (2012) Mitochondrial hyperfusion induced by loss of the fission protein Drp1 causes ATM-dependent G2/M arrest and aneuploidy through DNA replication stress. J Cell Sci 125:5745–5757

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ran FA, Hsu PD, Wright J et al (2013) Genome engineering using the CRISPR-Cas9 system. Nat Protoc 8:2281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Reddy PH (2009) Amyloid beta, mitochondrial structural and functional dynamics in Alzheimer’s disease. Exp Neurol 218:286–292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Rodriguez-Terrones D, Gaume X, Ishiuchi T et al (2018) A molecular roadmap for the emergence of early-embryonic-like cells in culture. Nat Genet 50:106–119

    Article  CAS  PubMed  Google Scholar 

  47. Salazar-Roa M, Malumbres M (2017) Fueling the cell division cycle. Trends Cell Biol 27:69–81

    Article  CAS  PubMed  Google Scholar 

  48. Seo BJ, Choi J, La H et al (2020) Role of mitochondrial fission-related genes in mitochondrial morphology and energy metabolism in mouse embryonic stem cells. Redox Biol 36:101599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Seo BJ, Yoon SH, Do JT (2018) Mitochondrial dynamics in stem cells and differentiation. Int J Mol Sci 19:3893

    Article  PubMed  PubMed Central  Google Scholar 

  50. Song M, Mihara K, Chen Y et al (2015) Mitochondrial fission and fusion factors reciprocally orchestrate mitophagic culling in mouse hearts and cultured fibroblasts. Cell Metab 21:273–286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Taguchi N, Ishihara N, Jofuku A et al (2007) Mitotic phosphorylation of dynamin-related GTPase Drp1 participates in mitochondrial fission. J Biol Chem 282:11521–11529

    Article  CAS  PubMed  Google Scholar 

  52. Tataranni T, Agriesti F, Pacelli C et al (2019) Dichloroacetate affects mitochondrial function and stemness-associated properties in pancreatic cancer cell lines. Cells 8:478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Tonelli C, Chio IIC, Tuveson DA (2018) Transcriptional regulation by Nrf2. Antioxid Redox Signal 29:1727–1745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Torre D, Lachmann A, Maayan A (2018) BioJupies: automated generation of interactive notebooks for RNA-Seq data analysis in the cloud. Cell Syst 7:556-561 e553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Vardhana SA, Arnold PK, Rosen BP et al (2019) Glutamine independence is a selectable feature of pluripotent stem cells. Nat Metab 1:676–687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Von Zglinicki T (2002) Oxidative stress shortens telomeres. Trends Biochem Sci 27:339–344

    Article  Google Scholar 

  57. Von Zglinicki T, Saretzki G, Döcke W et al (1995) Mild hyperoxia shortens telomeres and inhibits proliferation of fibroblasts: a model for senescence? Exp Cell Res 220:186–193

    Article  Google Scholar 

  58. Wai T, Langer T (2016) Mitochondrial dynamics and metabolic regulation. Trends Endocrinol Metab 27:105–117

    Article  CAS  PubMed  Google Scholar 

  59. Wakabayashi J, Zhang Z, Wakabayashi N et al (2009) The dynamin-related GTPase Drp1 is required for embryonic and brain development in mice. J Cell Biol 186:805–816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Wang W, Yin J, Ma X et al (2017) Inhibition of mitochondrial fragmentation protects against Alzheimer’s disease in rodent model. Hum Mol Genet 26:4118–4131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Westermann B (2010) Mitochondrial fusion and fission in cell life and death. Nat Rev Mol Cell Biol 11:872–884

    Article  CAS  PubMed  Google Scholar 

  62. White J, Dalton S (2005) Cell cycle control of embryonic stem cells. Stem Cell Rev 1:131–138

    Article  CAS  PubMed  Google Scholar 

  63. Xu X, Duan S, Yi F et al (2013) Mitochondrial regulation in pluripotent stem cells. Cell Metab 18:325–332

    Article  CAS  PubMed  Google Scholar 

  64. Yang J, Guo R, Wang H et al (2016) Tet enzymes regulate telomere maintenance and chromosomal stability of mouse ESCs. Cell Rep 15:1809–1821

    Article  CAS  PubMed  Google Scholar 

  65. Yeh CD, Richardson CD, Corn JE (2019) Advances in genome editing through control of DNA repair pathways. Nat Cell Biol 21:1468–1478

    Article  CAS  PubMed  Google Scholar 

  66. Ying Q-L, Smith AG (2003) Defined conditions for neural commitment and differentiation. Methods Enzymol 365:327–341

    Article  CAS  PubMed  Google Scholar 

  67. Zalzman M, Falco G, Sharova LV et al (2010) Zscan4 regulates telomere elongation and genomic stability in ES cells. Nature 464:858–863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Zhang J, Nuebel E, Daley GQ et al (2012) Metabolic regulation in pluripotent stem cells during reprogramming and self-renewal. Cell Stem Cell 11:589–595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Zhang Q, Dan J, Wang H et al (2016) Tcstv1 and Tcstv3 elongate telomeres of mouse ES cells. Sci Rep 6:19852

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Zhou W, Choi M, Margineantu D et al (2012) HIF1α induced switch from bivalent to exclusively glycolytic metabolism during ESC-to-EpiSC/hESC transition. EMBO J 31:2103–2116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Zunino R, Braschi E, Xu L et al (2009) Translocation of SenP5 from the nucleoli to the mitochondria modulates DRP1-dependent fission during mitosis. J Biol Chem 284:17783–17795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) of the Republic of Korea (Grant No. RS-2023-00208330) and the Korea Institute of Planning and Evaluation for Technology in Food, Agriculture and Forestry (IPET), funded by the Ministry of Agriculture, Food and Rural Affairs (MAFRA) (Grant No. 322006-05-02-CG000).

Author information

Authors and Affiliations

Authors

Contributions

BJS and JTD: wrote the main manuscript and designed the study. BJS, SBN, and JC: performed experiments and analyzed data. BJS, BA, CP, KH, and JTD: performed data analysis. All authors reviewed the manuscript.

Corresponding author

Correspondence to Jeong Tae Do.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethics approval and consent to participate

Experiments were performed following the approved guidelines and all experimental protocols were approved by the Institutional Animal Care and Use Committee (IACUC) of Konkuk University.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3184 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seo, B.J., Na, S.B., Choi, J. et al. Metabolic and cell cycle shift induced by the deletion of Dnm1l attenuates the dissolution of pluripotency in mouse embryonic stem cells. Cell. Mol. Life Sci. 80, 302 (2023). https://doi.org/10.1007/s00018-023-04962-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00018-023-04962-x

Keywords

Navigation