Skip to main content

Advertisement

Log in

N4-acetylcytidine of Nop2 mRNA is required for the transition of morula-to-blastocyst

  • Original Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

N-acetyltransferase 10 (NAT10)-mediated N4-acetylcytidine (ac4C) modification is crucial for mRNA stability and translation efficiency, yet the underlying function in mammalian preimplantation embryos remains unclear. Here, we characterized the ac4C modification landscape in mouse early embryos and found that the majority of embryos deficient in ac4C writer-NAT10 failed to develop into normal blastocysts. Through single-cell sequencing, RNA-seq, acetylated RNA immunoprecipitation combined with PCR (acRIP-PCR), and embryonic phenotype monitoring, Nop2 was screened as a target gene of Nat10. Mechanistically, Nat10 knockdown decreases the ac4C modification on Nop2 mRNA and reduces RNA and protein abundance by affecting the mRNA stability of Nop2. Then, depletion of NOP2 may inhibit the translation of transcription factor TEAD4, resulting in defective expression of the downstream lineage-specific gene Cdx2, and ultimately preventing blastomeres from undergoing the trophectoderm (TE) fate. However, exogenous Nop2 mRNA partially reverses this abnormal development. In conclusion, our findings demonstrate that defective ac4C modification of Nop2 mRNA hinders the morula-to-blastocyst transition by influencing the first cell fate decision in mice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

All data supporting this study are available within the article and the Supplementary Materials. The RNA-seq data of Nat10-depleted morulae in mice have been deposited in the Gene Expression Omnibus database (GEO) under the accession number GSE236943.

References

  1. Watson AJ, Natale DR, Barcroft LC (2004) Molecular regulation of blastocyst formation. Anim Reprod Sci 82–83:583–592

    Article  PubMed  Google Scholar 

  2. Fleming TP, Pickering SJ (1985) Maturation and polarization of the endocytotic system in outside blastomeres during mouse preimplantation development. J Embryol Exp Morphol 89:175–208

    CAS  PubMed  Google Scholar 

  3. Johnson MH, McConnell JM (2004) Lineage allocation and cell polarity during mouse embryogenesis. Semin Cell Dev Biol 15:583–597

    Article  CAS  PubMed  Google Scholar 

  4. Johnson MH, Ziomek CA (1983) Cell interactions influence the fate of mouse blastomeres undergoing the transition from the 16- to the 32-cell stage. Dev Biol 95:211–218

    Article  CAS  PubMed  Google Scholar 

  5. Dahl JA, Jung I, Aanes H et al (2016) Broad histone h3k4me3 domains in mouse oocytes modulate maternal-to-zygotic transition. Nature 537:548–552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Inoue A, Zhang Y (2011) Replication-dependent loss of 5-hydroxymethylcytosine in mouse preimplantation embryos. Science 334:194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Sui X, Hu Y, Ren C et al (2020) Mettl3-mediated m(6)a is required for murine oocyte maturation and maternal-to-zygotic transition. Cell Cycle 19:391–404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Yang Y, Wang L, Han X et al (2019) Rna 5-methylcytosine facilitates the maternal-to-zygotic transition by preventing maternal mrna decay. Mol Cell 75(1188–1202):e1111

    Google Scholar 

  9. Cohn WE (1960) Pseudouridine, a carbon-carbon linked ribonucleoside in ribonucleic acids: Isolation, structure, and chemical characteristics. J Biol Chem 235:1488–1498

    Article  CAS  PubMed  Google Scholar 

  10. Kumbhar BV, Kamble AD, Sonawane KD (2013) Conformational preferences of modified nucleoside n(4)-acetylcytidine, ac4c occur at “wobble” 34th position in the anticodon loop of trna. Cell Biochem Biophys 66:797–816

    Article  CAS  PubMed  Google Scholar 

  11. Ito S, Horikawa S, Suzuki T et al (2014) Human nat10 is an atp-dependent rna acetyltransferase responsible for n4-acetylcytidine formation in 18 s ribosomal rna (rrna). J Biol Chem 289:35724–35730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Arango D, Sturgill D, Alhusaini N et al (2018) Acetylation of cytidine in mrna promotes translation efficiency. Cell 175(1872–1886):e1824

    Google Scholar 

  13. Tardu M, Jones JD, Kennedy RT et al (2019) Identification and quantification of modified nucleosides in saccharomyces cerevisiae mrnas. ACS Chem Biol 14:1403–1409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Yang W, Li HY, Wu YF et al (2021) Ac4c acetylation of runx2 catalyzed by nat10 spurs osteogenesis of bmscs and prevents ovariectomy-induced bone loss. Mol Ther Nucleic acids 26:135–147

    Article  PubMed  PubMed Central  Google Scholar 

  15. Guo G, Shi X, Wang H et al (2020) Epitranscriptomic n4-acetylcytidine profiling in cd4(+) t cells of systemic lupus erythematosus. Front Cell Dev Biol 8:842

    Article  PubMed  PubMed Central  Google Scholar 

  16. Zhang Y, Jing Y, Wang Y et al (2021) Nat10 promotes gastric cancer metastasis via n4-acetylated col5a1. Signal Transduct Target Ther 6:173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wang G, Zhang M, Zhang Y et al (2022) Nat10-mediated mrna n4-acetylcytidine modification promotes bladder cancer progression. Clin Transl Med 12:e738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wang K, Zhou LY, Liu F et al (2022) Piwi-interacting rna haapir regulates cardiomyocyte death after myocardial infarction by promoting nat10-mediated ac(4) c acetylation of tfec mrna. Adv Sci 9:e2106058

    Article  Google Scholar 

  19. Xiang Y, Zhou C, Zeng Y et al (2021) Nat10-mediated n4-acetylcytidine of rna contributes to post-transcriptional regulation of mouse oocyte maturation in vitro. Front Cell Dev Biol 9:704341

    Article  PubMed  PubMed Central  Google Scholar 

  20. Lin J, Xiang Y, Huang J et al (2022) Nat10 maintains oga mrna stability through ac4c modification in regulating oocyte maturation. Front Endocrinol 13:907286

    Article  Google Scholar 

  21. Chen L, Wang WJ, Liu Q et al (2022) Nat10-mediated n4-acetylcytidine modification is required for meiosis entry and progression in male germ cells. Nucleic acids Res 50:10896–10913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Cui W, Dai X, Marcho C et al (2016) Towards functional annotation of the preimplantation transcriptome: an rnai screen in mammalian embryos. Sci Rep 6:37396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wang Y, Yuan P, Yan Z et al (2021) Single-cell multiomics sequencing reveals the functional regulatory landscape of early embryos. Nat Commun 12:1247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hao Y, Hao S, Andersen-Nissen E et al (2021) Integrated analysis of multimodal single-cell data. Cell 184(3573–3587):e3529

    Google Scholar 

  25. Zhou Y, Zhou B, Pache L et al (2019) Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat Commun 10:1523

    Article  PubMed  PubMed Central  Google Scholar 

  26. Arango D, Sturgill D, Oberdoerffer S (2019) Immunoprecipitation and sequencing of acetylated rna. Bio-Protoc 9:e3278

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Chen CY, Ezzeddine N, Shyu AB (2008) Messenger rna half-life measurements in mammalian cells. Methods Enzymol 448:335–357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wang X, Lu Z, Gomez A et al (2014) N6-methyladenosine-dependent regulation of messenger rna stability. Nature 505:117–120

    Article  PubMed  Google Scholar 

  29. Lasman L, Krupalnik V, Viukov S et al (2020) Context-dependent functional compensation between ythdf m(6)a reader proteins. Genes Dev 34:1373–1391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Strumpf D, Mao CA, Yamanaka Y et al (2005) Cdx2 is required for correct cell fate specification and differentiation of trophectoderm in the mouse blastocyst. Development 132:2093–2102

    Article  CAS  PubMed  Google Scholar 

  31. Jedrusik A, Bruce AW, Tan MH et al (2010) Maternally and zygotically provided cdx2 have novel and critical roles for early development of the mouse embryo. Dev Biol 344:66–78

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Nishioka N, Yamamoto S, Kiyonari H et al (2008) Tead4 is required for specification of trophectoderm in pre-implantation mouse embryos. Mech Dev 125:270–283

    Article  CAS  PubMed  Google Scholar 

  33. Nishioka N, Inoue K, Adachi K et al (2009) The hippo signaling pathway components lats and yap pattern tead4 activity to distinguish mouse trophectoderm from inner cell mass. Dev Cell 16:398–410

    Article  CAS  PubMed  Google Scholar 

  34. Sas-Chen A, Thomas JM, Matzov D et al (2020) Dynamic rna acetylation revealed by quantitative cross-evolutionary mapping. Nature 583:638–643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Thalalla Gamage S, Sas-Chen A, Schwartz S et al (2021) Quantitative nucleotide resolution profiling of rna cytidine acetylation by ac4c-seq. Nat Protoc 16:2286–2307

    Article  CAS  PubMed  Google Scholar 

  36. Arango D, Sturgill D, Yang R et al (2022) Direct epitranscriptomic regulation of mammalian translation initiation through n4-acetylcytidine. Mol Cell 82(2797–2814):e2711

    Google Scholar 

  37. Jiang X, Cheng Y, Zhu Y et al (2023) Maternal nat10 orchestrates oocyte meiotic cell-cycle progression and maturation in mice. Nat Commun 14:3729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wu R, Li A, Sun B et al (2019) A novel m(6)a reader prrc2a controls oligodendroglial specification and myelination. Cell Res 29:23–41

    Article  PubMed  Google Scholar 

  39. Lan T, Li H, Zhang D et al (2019) Kiaa1429 contributes to liver cancer progression through n6-methyladenosine-dependent post-transcriptional modification of gata3. Mol Cancer 18:186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wu Y, Xu X, Qi M et al (2022) N(6)-methyladenosine regulates maternal rna maintenance in oocytes and timely rna decay during mouse maternal-to-zygotic transition. Nat Cell Biol 24:917–927

    Article  CAS  PubMed  Google Scholar 

  41. Zeng Y, Wang S, Gao S et al (2018) Refined rip-seq protocol for epitranscriptome analysis with low input materials. PLoS Biol 16:e2006092

    Article  PubMed  PubMed Central  Google Scholar 

  42. Dominissini D, Moshitch-Moshkovitz S, Salmon-Divon M et al (2013) Transcriptome-wide mapping of n(6)-methyladenosine by m(6)a-seq based on immunocapturing and massively parallel sequencing. Nat Protoc 8:176–189

    Article  CAS  PubMed  Google Scholar 

  43. Zhu Z, Xing X, Huang S et al (2021) Nat10 promotes osteogenic differentiation of mesenchymal stem cells by mediating n4-acetylcytidine modification of gremlin 1. Stem Cells Int 2021:8833527

    Article  PubMed  PubMed Central  Google Scholar 

  44. Zhao W, Zhou Y, Cui Q et al (2019) Paces: Prediction of n4-acetylcytidine (ac4c) modification sites in mrna. Sci Rep 9:11112

    Article  PubMed  PubMed Central  Google Scholar 

  45. Alam W, Tayara H, Chong KT (2020) Xg-ac4c: Identification of n4-acetylcytidine (ac4c) in mrna using extreme gradient boosting with electron-ion interaction pseudopotentials. Sci Rep 10:20942

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Cui W, Pizzollo J, Han Z et al (2016) Nop2 is required for mammalian preimplantation development. Mol Reprod Dev 83:124–131

    Article  CAS  PubMed  Google Scholar 

  47. Wang H, Wang L, Wang Z et al (2020) The nucleolar protein nop2 is required for nucleolar maturation and ribosome biogenesis during preimplantation development in mammals. FASEB J 34:2715–2729

    Article  CAS  PubMed  Google Scholar 

  48. Ralston A, Cox BJ, Nishioka N et al (2010) Gata3 regulates trophoblast development downstream of tead4 and in parallel to cdx2. Development 137:395–403

    Article  CAS  PubMed  Google Scholar 

  49. Hansen CG, Moroishi T, Guan KL (2015) Yap and taz: a nexus for hippo signaling and beyond. Trends Cell Biol 25:499–513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Yagi R, Kohn MJ, Karavanova I et al (2007) Transcription factor tead4 specifies the trophectoderm lineage at the beginning of mammalian development. Development 134:3827–3836

    Article  CAS  PubMed  Google Scholar 

  51. Hong B, Brockenbrough JS, Wu P et al (1997) Nop2p is required for pre-rrna processing and 60s ribosome subunit synthesis in yeast. Mol Cell Biol 17:378–388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Klinge S, Woolford JL Jr (2019) Ribosome assembly coming into focus. Nat Rev Mol Cell Biol 20:116–131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Ralston A, Rossant J (2008) Cdx2 acts downstream of cell polarization to cell-autonomously promote trophectoderm fate in the early mouse embryo. Dev Biol 313:614–629

    Article  CAS  PubMed  Google Scholar 

  54. Niwa H, Toyooka Y, Shimosato D et al (2005) Interaction between oct3/4 and cdx2 determines trophectoderm differentiation. Cell 123:917–929

    Article  CAS  PubMed  Google Scholar 

  55. Jedrusik A, Parfitt DE, Guo G et al (2008) Role of cdx2 and cell polarity in cell allocation and specification of trophectoderm and inner cell mass in the mouse embryo. Genes Dev 22:2692–2706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by grants from the National Natural Science Foundation of China (31771601, U20A20376, 61972116) and the Applied Technology Research and Development Project of Heilongjiang (GA20C018).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, MYW and QW; Methodology, HJH and ZBH; Validation, ZBH; Formal Analysis, RC and YZ; Investigation, MYW, HJH and QW; Writing—Original Draft, MYW, RC and HJH; Writing—Review & Editing, MYW, HJH, YZ and QW; Visualization, MYW and RC; Funding Acquisition, YZ and QW. All authors discussed the results and approved the final manuscript.

Corresponding authors

Correspondence to Yan Zhang or Qiong Wu.

Ethics declarations

Conflict of Interest

The authors declare that they have no competing interests.

Ethical approval

All operations on experimental animals were carried out in accordance with the Guide for the Care and Use of Laboratory Animals from the Harbin Institute of Technology (HIT) and approved by the Institutional Animal Care and Use Committee or Animal Experimental Ethics Committee of HIT (IACUC-2023001).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, M., Cheng, R., He, H. et al. N4-acetylcytidine of Nop2 mRNA is required for the transition of morula-to-blastocyst. Cell. Mol. Life Sci. 80, 307 (2023). https://doi.org/10.1007/s00018-023-04955-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00018-023-04955-w

Keywords

Navigation