Skip to main content

Advertisement

Log in

Characterization of K562 cells: uncovering novel chromosomes, assessing transferrin receptor expression, and probing pharmacological therapies

  • Original Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Human erythroleukemic K562 cells represent the prototypical cell culture model of chronic myeloid leukemia (CML). The cells are pseudo-triploid and positive for the Philadelphia chromosome. Therefore, K562 cells have been widely used for investigating the BCR/ABL1 oncogene and the tyrosine kinase inhibitor, imatinib-mesylate. Further, K562 cells overexpress transferrin receptors (TfR) and have been used as a model for targeting cytotoxic therapies, via receptor-mediated endocytosis. Here, we have characterized K562 cells focusing on the karyotype of cells in prolonged culture, regulation of expression of TfR in wildtype (WT) and doxorubicin-resistant cells, and responses to histone deacetylase inhibition (HDACi). Karyotype analysis indicates novel chromosomes and gene expression analysis suggests a shift of cultured K562 cells away from patient-derived leukemic cells. We confirm the high expression of TfR on K562 cells using immunofluorescence and cell-surface receptor binding radioassays. Importantly, high TfR expression is observed in patient-derived cells, and we highlight the persistent expression of TfR following doxorubicin acquired resistance. Epigenetic analysis indicates that permissive histone acetylation and methylation at the promoter region regulates the transcription of TfR in K562 cells. Finally, we show relatively high expression of HDAC enzymes in K562 cells and demonstrate the chemotoxic effects of HDACi, using the FDA-approved hydroxamic acid, vorinostat. Together with a description of morphology, infrared spectral analysis, and examination of metabolic properties, we provide a comprehensive characterization of K562 cells. Overall, K562 cell culture systems remain widely used for the investigation of novel therapeutics for CML, which is particularly important in cases of imatinib-mesylate resistance.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Publically-accessible datasets were analyzed in this study and the accession codes have been provided.

References

  1. Nowell PC (1960) A minute chromosome in human granulocytic leukemia. Science 132:1497–1501

    Google Scholar 

  2. Lozzio CB, Lozzio BB (1975) Human chronic myelogenous leukemia cell-line with positive Philadelphia chromosome. Blood 45(3):321–334

    CAS  PubMed  Google Scholar 

  3. Lee SM, Bae JH, Kim MJ et al (2007) Bcr-Abl-independent imatinib-resistant K562 cells show aberrant protein acetylation and increased sensitivity to histone deacetylase inhibitors. J Pharmacol Exp Ther 322(3):1084–1092

    CAS  PubMed  Google Scholar 

  4. Zhang B, Strauss AC, Chu S et al (2010) Effective targeting of quiescent chronic myelogenous leukemia stem cells by histone deacetylase inhibitors in combination with imatinib mesylate. Cancer Cell 17(5):427–442

    PubMed  PubMed Central  Google Scholar 

  5. Druker BJ, Tamura S, Buchdunger E et al (1996) Effects of a selective inhibitor of the Abl tyrosine kinase on the growth of Bcr-Abl positive cells. Nat Med 2(5):561–566

    CAS  PubMed  Google Scholar 

  6. Bixby D, Talpaz M (2011) Seeking the causes and solutions to imatinib-resistance in chronic myeloid leukemia. Leukemia 25(1):7–22

    CAS  PubMed  Google Scholar 

  7. Weisberg E, Manley PW, Cowan-Jacob SW, Hochhaus A, Griffin JD (2007) Second generation inhibitors of BCR-ABL for the treatment of imatinib-resistant chronic myeloid leukaemia. Nat Rev Cancer 7(5):345–356

    CAS  PubMed  Google Scholar 

  8. Szakács G, Paterson JK, Ludwig JA, Booth-Genthe C, Gottesman MM (2006) Targeting multidrug resistance in cancer. Nat Rev Drug Discov 5(3):219–234

    PubMed  Google Scholar 

  9. Lozzio CB, Lozzio BB, Machado EA, Fuhr JE, Lair SV, Bamberger EG (1979) Effects of sodium butyrate on human chronic myelogenous leukaemia cell line K562. Nature 281:709–710

    CAS  PubMed  Google Scholar 

  10. Nimmanapalli R, Fuino L, Stobaugh C, Richon V, Bhalla K (2003) Cotreatment with the histone deacetylase inhibitor suberoylanilide hydroxamic acid (SAHA) enhances imatinib-induced apoptosis of Bcr-Abl–positive human acute leukemia cells. Blood 101(8):3236–3239

    CAS  PubMed  Google Scholar 

  11. Klausner RD, Ashwell G, Van Renswoude J, Harford JB, Bridges KR (1983) Binding of apotransferrin to K562 cells: explanation of the transferrin cycle. Proc Natl Acad Sci 80(8):2263–2266

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Van Renswoude J, Bridges KR, Harford JB, Klausner RD (1982) Receptor-mediated endocytosis of transferrin and the uptake of Fe in K562 cells: identification of a nonlysosomal acidic compartment. Proc Natl Acad Sci 79(20):6186–6190

    PubMed  PubMed Central  Google Scholar 

  13. Karagiannis TC, Lobachevsky PN, Leung BK, White JM, Martin RF (2006) Receptor-mediated DNA-targeted photoimmunotherapy. Can Res 66(21):10548–10552

    CAS  Google Scholar 

  14. Davis ME, Zuckerman JE, Choi CH et al (2010) Evidence of RNAi in humans from systemically administered siRNA via targeted nanoparticles. Nature 464(7291):1067–1070. https://doi.org/10.1038/nature08956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Absher M (1973) Hemocytometer counting. Tissue culture: methods and applications. Academic Press, New York, pp 395–397

    Google Scholar 

  16. Rafehi H, Smith AJ, Balcerczyk A et al (2012) Investigation into the biological properties of the olive polyphenol, hydroxytyrosol: mechanistic insights by genome-wide mRNA-Seq analysis. Genes Nutr 7(2):343–355

    CAS  PubMed  Google Scholar 

  17. Tang A, Team AP (2014) Functional genomics data and expression look-up tools: array express and expression atlas

  18. Lukk M, Kapushesky M, Nikkilä J et al (2010) A global map of human gene expression. Nat Biotechnol 28(4):322–324

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Wu M, Neilson A, Swift AL et al (2007) Multiparameter metabolic analysis reveals a close link between attenuated mitochondrial bioenergetic function and enhanced glycolysis dependency in human tumor cells. Am J Physiol Cell Physiol 292(1):C125–C136

    CAS  PubMed  Google Scholar 

  20. Mah L-J, Vasireddy RS, Tang MM, Georgiadis GT, El-Osta A, Karagiannis TC (2010) Quantification of γH2AX Foci in Response to Ionising Radiation. J Visualiz Exp. https://doi.org/10.3791/1957

    Article  Google Scholar 

  21. Ververis K, Rodd AL, Tang MM, El-Osta A, Karagiannis TC (2011) Histone deacetylase inhibitors augment doxorubicin-induced DNA damage in cardiomyocytes. Cell Mol Life Sci 68(24):4101–4114. https://doi.org/10.1007/s00018-011-0727-1

    Article  CAS  PubMed  Google Scholar 

  22. Andersson LC, Nilsson K, Gahmberg CG (1979) K562—a human erythroleukemic cell line. Int J Cancer 23(2):143–147

    CAS  PubMed  Google Scholar 

  23. Sutherland JA, Turner AR, Mannoni P, McGann LE, Turc JM (1986) Differentiation of K562 leukemia cells along erythroid, macrophage, and megakaryocyte lineages. J Biol Response Mod 5(3):250–262

    CAS  PubMed  Google Scholar 

  24. Baliga BS, Mankad M, Shah AK, Mankad VN (1993) Mechanism of differentiation of human erythroleukaemic cell line K562 by hemin. Cell Prolif 26(6):519–529

    CAS  PubMed  Google Scholar 

  25. Malek K, Wood BR, Bambery KR (2014) FTIR imaging of tissues: techniques and methods of analysis. Optical spectroscopy and computational methods in biology and medicine. Springer, pp 419–473

    Google Scholar 

  26. Movasaghi Z, Rehman S, ur Rehman DI (2008) Fourier transform infrared (FTIR) spectroscopy of biological tissues. Appl Spectrosc Rev 43(2):134–179

    CAS  Google Scholar 

  27. Bellisola G, Della Peruta M, Vezzalini M et al (2010) Tracking infrared signatures of drugs in cancer cells by Fourier transform microspectroscopy. Analyst 135(12):3077–3086

    CAS  PubMed  Google Scholar 

  28. Chen TR (1985) Modal karyotype of human leukemia cell line, K562 (ATCC CCL 243). Cancer Genet Cytogenet 17(1):55–60

    CAS  PubMed  Google Scholar 

  29. Gribble SM, Roberts I, Grace C, Andrews KM, Green AR, Nacheva EP (2000) Cytogenetics of the chronic myeloid leukemia-derived cell line K562: karyotype clarification by multicolor fluorescence in situ hybridization, comparative genomic hybridization, and locus-specific fluorescence in situ hybridization. Cancer Genet Cytogenet 118(1):1–8

    CAS  PubMed  Google Scholar 

  30. Naumann S, Reutzel D, Speicher M, Decker HJ (2001) Complete karyotype characterization of the K562 cell line by combined application of G-banding, multiplex-fluorescence in situ hybridization, fluorescence in situ hybridization, and comparative genomic hybridization. Leuk Res 25(4):313–322

    CAS  PubMed  Google Scholar 

  31. Andersson LC, Jokinen M, Gahmberg CG, Klein E, Klein G, Nilsson K (1979) Presence of erythrocytic components in the K562 cell line. Int J Cancer 24(4):514

    CAS  PubMed  Google Scholar 

  32. Cudkowicz A, Klausner R, Bridges K (1983) Regulation of the transferrin receptor in K562 erythroleukemia cells. Prog Clin Biol Res 165:509–519

    Google Scholar 

  33. Leibowitz D, Cubbon R, Bank A (1985) Increased expression of a novel c-abl-related RNA in K562 cells. Blood 65(3):526–529

    CAS  PubMed  Google Scholar 

  34. Maziarz RT, Burakoff SJ, Faller DV (1990) The regulation of exogenous and endogenous class I MHC genes in a human tumor cell line, K562. Mol Immunol 27(2):135–142

    CAS  PubMed  Google Scholar 

  35. Charnay P, Maniatis T (1983) Transcriptional regulation of globin gene expression in the human erythroid cell line K562. Science 220(4603):1281–1283

    CAS  PubMed  Google Scholar 

  36. Subramanian A, Tamayo P, Mootha VK et al (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA 102(43):15545–15550

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Kanehisa M, Goto S, Sato Y, Furumichi M, Tanabe M (2011) KEGG for integration and interpretation of large-scale molecular data sets. Nucleic acids Res 40:gkr988

    Google Scholar 

  38. Consortium GO (2004) The Gene Ontology (GO) database and informatics resource. Nucleic Acids Res 32(suppl 1):D258–D261

    Google Scholar 

  39. del Senno L, Barbieri R, Amelotti F et al (1985) Methylation and expression of c-myc and c-abl oncogenes in human leukemic K562 cells before and after treatment with 5-azacytidine. Cancer Detect Prev 9(1–2):9–15

    Google Scholar 

  40. Tortorella SM, Hung A, Karagiannis TC (2015) The implication of cancer progenitor cells and the role of epigenetics in the development of novel therapeutic strategies for chronic myeloid leukemia. Antioxid Redox Signal 22(16):1425–1462

    CAS  PubMed  Google Scholar 

  41. Hamilton TA, Wada HG, Sussman HH (1979) Identification of transferrin receptors on the surface of human cultured cells. Proc Natl Acad Sci 76(12):6406–6410

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Scatchard G (1949) The attractions of proteins for small molecules and ions. Ann N Y Acad Sci 51(4):660–672

    CAS  Google Scholar 

  43. Fatemiyan N, Davie JR (2023) Broad histone H4 monomethylation marks expressed genes involved in translation. Genome. https://doi.org/10.1139/gen-2023-0011

    Article  PubMed  Google Scholar 

  44. Sharma P, Sattarifard H, Fatemiyan N, Lakowski TM, Davie JR (2022) Bioinformatic analyses of Broad H3K79me2 domains in different Leukemia cell line data sets. Cells. https://doi.org/10.3390/cells11182830

    Article  PubMed  PubMed Central  Google Scholar 

  45. Gewirtz D (1999) A critical evaluation of the mechanisms of action proposed for the antitumor effects of the anthracycline antibiotics adriamycin and daunorubicin. Biochem Pharmacol 57(7):727–741

    CAS  PubMed  Google Scholar 

  46. Praet M, Stryckmans P, Ruysschaert J-M (1996) Cellular uptake, cytotoxicity, and transport kinetics of anthracyclines in human sensitive and multidrug-resistant K562 cells. Biochem Pharmacol 51(10):1341–1348

    CAS  PubMed  Google Scholar 

  47. Benedetti E, Bramanti E, Papineschi F, Rossi I, Benedetti E (1997) Determination of the relative amount of nucleic acids and proteins in leukemic and normal lymphocytes by means of Fourier transform infrared microspectroscopy. Appl Spectrosc 51(6):792–797

    CAS  Google Scholar 

  48. Tsuruo T, Iida H, Nojiri M, Tsukagoshi S, Sakurai Y (1983) Circumvention of vincristine and adriamycin resistance in vitro and in vivo by calcium influx blockers. Can Res 43(6):2905–2910

    CAS  Google Scholar 

  49. Chen B, Sun Q, Wang X et al (2008) Reversal in multidrug resistance by magnetic nanoparticle of Fe3O4 loaded with adriamycin and tetrandrine in K562/A02 leukemic cells. Int J Nanomed 3(2):277

    CAS  Google Scholar 

  50. Diaz-Blanco E, Bruns I, Neumann F et al (2007) Molecular signature of CD34(+) hematopoietic stem and progenitor cells of patients with CML in chronic phase. Leukemia 21(3):494–504. https://doi.org/10.1038/sj.leu.2404549

    Article  CAS  PubMed  Google Scholar 

  51. Clarke CJ, Holyoake TL (2017) Preclinical approaches in chronic myeloid leukemia: from cells to systems. Exp Hematol 47:13–23. https://doi.org/10.1016/j.exphem.2016.11.005

    Article  PubMed  PubMed Central  Google Scholar 

  52. West AP, Bennett MJ, Sellers VM, Andrews NC, Enns CA, Bjorkman PJ (2000) Comparison of the interactions of transferrin receptor and transferrin receptor 2 with transferrin and the hereditary hemochromatosis protein HFE. J Biol Chem 275(49):38135–38138

    CAS  PubMed  Google Scholar 

  53. Mayle KM, Le AM, Kamei DT (2012) The intracellular trafficking pathway of transferrin. Biochimica et Biophysica Acta (BBA)-General Subjects 1820(3):264–281

    CAS  PubMed  Google Scholar 

  54. Luck AN, Mason AB (2011) Transferrin-mediated cellular iron delivery. Curr Top Membr 69:3–35

    Google Scholar 

  55. Steere AN, Byrne SL, Chasteen ND, Mason AB (2012) Kinetics of iron release from transferrin bound to the transferrin receptor at endosomal pH. Biochimica et Biophysica Acta (BBA)-General Subjects 1820(3):326–333

    CAS  PubMed  Google Scholar 

  56. Gatter KC, Brown G, Trowbridge I, Woolston R, Mason D (1983) Transferrin receptors in human tissues: their distribution and possible clinical relevance. J Clin Pathol 36(5):539–545

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Poudel G, Tolland MG, Hughes TP, Pagani IS (2022) Mechanisms of resistance and implications for treatment strategies in chronic myeloid Leukaemia. Cancers (Basel). https://doi.org/10.3390/cancers14143300

    Article  PubMed  Google Scholar 

  58. Wang HW, Ma KL, Liu H, Zhou JY (2020) Reversal of multidrug resistance in leukemia cells using a transferrin-modified nanomicelle encapsulating both doxorubicin and psoralen. Aging (Albany NY) 12(7):6018–6029. https://doi.org/10.18632/aging.102992

    Article  CAS  PubMed  Google Scholar 

  59. Ding W, Guo L (2013) Immobilized transferrin Fe3O4@SiO2 nanoparticle with high doxorubicin loading for dual-targeted tumor drug delivery. Int J Nanomed 8:4631–4639. https://doi.org/10.2147/ijn.S51745

    Article  Google Scholar 

  60. Pan YL, Zeng SX, Hao RR, Liang MH, Shen ZR, Huang WH (2022) The progress of small-molecules and degraders against BCR-ABL for the treatment of CML. Eur J Med Chem 238:114442. https://doi.org/10.1016/j.ejmech.2022.114442

    Article  CAS  PubMed  Google Scholar 

  61. Jabbour E, Parikh SA, Kantarjian H, Cortes J (2011) Chronic myeloid leukemia: mechanisms of resistance and treatment. Hematol Oncol Clin North Am 25(5):981–995. https://doi.org/10.1016/j.hoc.2011.09.004. (v)

    Article  PubMed  PubMed Central  Google Scholar 

  62. Lernoux M, Schnekenburger M, Dicato M, Diederich M (2020) Epigenetic mechanisms underlying the therapeutic effects of HDAC inhibitors in chronic myeloid leukemia. Biochem Pharmacol 173:113698. https://doi.org/10.1016/j.bcp.2019.113698

    Article  CAS  PubMed  Google Scholar 

  63. Munster PN, Marchion D, Thomas S et al (2009) Phase I trial of vorinostat and doxorubicin in solid tumours: histone deacetylase 2 expression as a predictive marker. Br J Cancer 101(7):1044–1050. https://doi.org/10.1038/sj.bjc.6605293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Dai Y, Chen S, Venditti CA et al (2008) Vorinostat synergistically potentiates MK-0457 lethality in chronic myelogenous leukemia cells sensitive and resistant to imatinib mesylate. Blood 112(3):793–804. https://doi.org/10.1182/blood-2007-10-116376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Fiskus W, Pranpat M, Balasis M et al (2006) Cotreatment with vorinostat (suberoylanilide hydroxamic acid) enhances activity of dasatinib (BMS-354825) against imatinib mesylate-sensitive or imatinib mesylate-resistant chronic myelogenous leukemia cells. Clin Cancer Res 12(19):5869–5878. https://doi.org/10.1158/1078-0432.Ccr-06-0980

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the use of the facilities provided by Monash Micro Imaging at AMREP and particularly, the expert assistance from Drs Stephen Cody and Iśka Carmichael. Also we acknowledge the technical expertise of Dr. Clement Khaw (Singapore Bioimaging Consortium-Nikon Imaging Centre) for N-SIM super resolution imaging and Dr Darren Henstrigde (Cellular and Molecular metabolism, Baker Heart and Diabetes Institute) for assistance with the Seahorse XF96 extracellular flux analyzer. M.W. was supported by the Leukaemia Foundation of Australia. EP is supported by an Australian Government Research Training Program Scholarship. We thank the National Computing Infrastructure (NCI), and the Pawsey Supercomputing Centre in Australia (funded by the Australian Government). Further, we thank the Spartan High Performance Computing service (University of Melbourne), and the Partnership for Advanced Computing in Europe (PRACE) for awarding the access to Piz Daint, hosted at the Swiss National Supercomputing Centre (CSCS), Switzerland. Supported in part by the Victorian Government’s Operational Infrastructure Support Program.

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

TCK, AH, and AE conceptualized the aims and methodology, were involved in supervision, and production of the first draft of the manuscript. MW, KV, EP, SMT, PAW, HR, IK, SSM, AH, and JV generated data, performed data analysis, curated data, and produced the first draft of the manuscript. All authors contributed to editing and reviewing the manuscript.

Corresponding author

Correspondence to Tom C. Karagiannis.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This study was performed in line with the principles of the Declaration of Helsinki. Human peripheral blood mononuclear cells (PBMC) were fractionated using the Ficoll Plaque (GE Healthcare, Wauwatosa, Wisconsin, USA) method from buffy coat obtained from the Australian Red Cross Blood Bank (ARCB) under ethics approval (#304/12) and informed consent was obtained from the donors. Cells were maintained in complete-RPMI-1640 medium supplemented with 10% FBS, 2 mM l-glutamine and 1% penicillin/streptomycin at 37 °C, 5% (v/v) CO2.

Consent to participate

Informed consent was obtained from all donors.

Consent for publication

Informed consent was obtained from study participants.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2397 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karagiannis, T.C., Wall, M., Ververis, K. et al. Characterization of K562 cells: uncovering novel chromosomes, assessing transferrin receptor expression, and probing pharmacological therapies. Cell. Mol. Life Sci. 80, 248 (2023). https://doi.org/10.1007/s00018-023-04905-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00018-023-04905-6

Keywords

Navigation