Skip to main content

Advertisement

Log in

VGLL4 promotes vascular endothelium specification via TEAD1 in the vascular organoids and human pluripotent stem cells-derived endothelium model

  • Original Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Background

We have shown that Hippo-YAP signaling pathway plays an important role in endothelial cell differentiation. Vestigial-like family member 4 (VGLL4) has been identified as a YAP inhibitor. However, the exact function of VGLL4 in vascular endothelial cell development remains unclear. In this study, we investigated the role of VGLL4, in human endothelial lineage specification both in 3D vascular organoid and 2D endothelial cell differentiation.

Methods and results

In this study, we found that VGLL4 was increased during 3D vascular organoids generation and directed differentiation of human embryonic stem cells H1 towards the endothelial lineage. Using inducible ectopic expression of VGLL4 based on the piggyBac system, we proved that overexpression of VGLL4 in H1 promoted vascular organoids generation and endothelial cells differentiation. In contrast, VGLL4 knockdown (heterozygous knockout) of H1 exhibited inhibitory effects. Using bioinformatics analysis and protein immunoprecipitation, we further found that VGLL4 binds to TEAD1 and facilitates the expression of endothelial master transcription factors, including FLI1, to promote endothelial lineage specification. Moreover, TEAD1 overexpression rescued VGLL4 knockdown-mediated negative effects.

Conclusions

In summary, VGLL4 promotes EC lineage specification both in 3D vascular organoid and 2D EC differentiation from pluripotent stem cell, VGLL4 interacts with TEAD1 and facilitates EC key transcription factor, including FLI1, to enhance EC lineage specification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Availability of data and materials

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Jun W, Shijie L, Todd H, Martin JF (2018) The Hippo pathway in the heart: pivotal roles in development, disease, and regeneration. Nat Rev Cardiol. https://doi.org/10.1038/s41569-018-0063-3

    Article  Google Scholar 

  2. Randy J, Georg H (2014) The two faces of Hippo: targeting the Hippo pathway for regenerative medicine and cancer treatment. Nat Rev Drug Discov. https://doi.org/10.1038/nrd4161

    Article  Google Scholar 

  3. Zhang W, Gao Y, Li P, Shi Z, Guo T, Li F, Han X, Feng Y, Zheng C, Wang Z (2014) VGLL4 functions as a new tumor suppressor in lung cancer by negatively regulating the YAP-TEAD transcriptional complex. Cell Res 24:331–343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Xin M, Kim Y, Sutherland LB, Qi X, McAnally J, Schwartz RJ, Richardson JA, Bassel-Duby R, Olson EN (2011) Regulation of insulin-like growth factor signaling by Yap governs cardiomyocyte proliferation and embryonic heart size. Sci Signal 4:ra70–ra70

    Article  PubMed  PubMed Central  Google Scholar 

  5. von Gise A, Lin Z, Schlegelmilch K, Honor LB, Pan GM, Buck JN, Ma Q, Ishiwata T, Zhou B, Camargo FD (2012) YAP1, the nuclear target of Hippo signaling, stimulates heart growth through cardiomyocyte proliferation but not hypertrophy. Proc Natl Acad Sci 109:2394–2399

    Article  Google Scholar 

  6. Wang X, Valls AF, Schermann G, Shen Y, Moya IM, Castro L, Urban S, Solecki GM, Winkler F, Riedemann L (2017) YAP/TAZ orchestrate VEGF signaling during developmental angiogenesis. Dev Cell 42(462–478):e7

    Google Scholar 

  7. Chen Z, Friedrich GA, Soriano P (1994) Transcriptional enhancer factor 1 disruption by a retroviral gene trap leads to heart defects and embryonic lethality in mice. Genes Dev 8:2293–2301

    Article  CAS  PubMed  Google Scholar 

  8. He J, Bao Q, Yan M, Liang J, Zhu Y, Wang C, Ai D (2018) The role of Hippo/yes-associated protein signalling in vascular remodelling associated with cardiovascular disease. Br J Pharmacol 175:1354–1361

    Article  CAS  PubMed  Google Scholar 

  9. Cho H, Kim J, Ahn JH, Hong Y-K, Mäkinen T, Lim D-S, Koh GY (2019) YAP and TAZ negatively regulate Prox1 during developmental and pathologic lymphangiogenesis. Circ Res 124:225–242

    Article  CAS  PubMed  Google Scholar 

  10. Quan Y, Shan X, Hu M, Jin P, Ma J, Fan J, Yang J, Zhang H, Fan X, Gong Y (2022) YAP inhibition promotes endothelial cell differentiation from pluripotent stem cell through EC master transcription factor FLI1. J Mol Cell Cardiol 163:81–96

    Article  CAS  PubMed  Google Scholar 

  11. Deng X, Fang L (2018) VGLL4 is a transcriptional cofactor acting as a novel tumor suppressor via interacting with TEADs. Am J Cancer Res 8:932

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Suo J, Feng X, Li J (2020) VGLL4 promotes osteoblast differentiation by antagonizing TEADs-inhibited Runx2 transcription. Sci Adv 6:4eaba4147

    Article  Google Scholar 

  13. Feng X, Wang Z, Wang F, Lu T, Xu J, Ma X, Li J, He L, Zhang W, Li S (2019) Dual function of VGLL 4 in muscle regeneration. EMBO J 38:e101051

    Article  PubMed  PubMed Central  Google Scholar 

  14. Yu W, Ma X, Xu J, Heumüller AW, Fei Z, Feng X, Wang X, Liu K, Li J, Cui G (2019) VGLL4 plays a critical role in heart valve development and homeostasis. PLoS Genet 15:e1007977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zakrzewski W, Dobrzyński M, Szymonowicz M, Rybak Z (2019) Stem cells: past, present, and future. Stem Cell Res Ther 10:1–22

    Article  Google Scholar 

  16. Wernly B, Mirna M, Rezar R, Prodinger C, Jung C, Podesser BK, Kiss A, Hoppe UC, Lichtenauer M (2019) Regenerative cardiovascular therapies: stem cells and beyond. Int J Mol Sci 20:1420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wimmer RA, Leopoldi A, Aichinger M, Wick N, Hantusch B, Novatchkova M, Taubenschmid J, Hämmerle M, Esk C, Bagley JA (2019) Human blood vessel organoids as a model of diabetic vasculopathy. Nature 565:505–510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wimmer RA, Leopoldi A, Aichinger M, Kerjaschki D, Penninger JM (2019) Generation of blood vessel organoids from human pluripotent stem cells. Nat Protoc 14:3082–3100

    Article  CAS  PubMed  Google Scholar 

  19. Quan Y, Zhang T, Zhang H, Yang J, Wang Y (2020) Generation of a human embryonic stem cell (WAe001-A-47) with hVGLL4 doxycyclin-inducible expression by the PiggyBac transposon system. Stem Cell Res 50:102142

    Article  PubMed  Google Scholar 

  20. Patsch C, Challet-Meylan L, Thoma EC, Urich E, Heckel T, O’Sullivan JF, Grainger SJ, Kapp FG, Sun L, Christensen K (2015) Generation of vascular endothelial and smooth muscle cells from human pluripotent stem cells. Nat Cell Biol 17:994–1003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Moya IM, Halder G (2019) Hippo–YAP/TAZ signalling in organ regeneration and regenerative medicine. Nat Rev Mol Cell Biol 20:211–226

    Article  CAS  PubMed  Google Scholar 

  22. Zhang Y, Shen H, Withers HG, Yang N, Denson KE, Mussell AL, Truskinovsky A, Fan Q, Gelman IH, Frangou C (2017) VGLL4 selectively represses YAP-dependent gene induction and tumorigenic phenotypes in breast cancer. Sci Rep 7:6190

    Article  PubMed  PubMed Central  Google Scholar 

  23. Chen R, Liu Y, Zhuang H, Yang B, Hei K, Xiao M, Hou C, Gao H, Zhang X, Jia C (2017) Quantitative proteomics reveals that long non-coding RNA MALAT1 interacts with DBC1 to regulate p53 acetylation. Nucleic Acids Res 45:9947–9959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Han X-Y, Liu H-Z, Cai C-Y, Li X-Q, Ju Y-B, Li Y-Y, Zhang Z-G (2018) Expression of VGLL4 and YAP protein in gastric carcinoma tissues and tumor prognosis. Minerva Med 109:429–435

    Article  PubMed  Google Scholar 

  25. Tajonar A, Maehr R, Hu G, Sneddon JB, Rivera-Feliciano J, Cohen DE, Elledge SJ, Melton DA (2013) Brief report: VGLL4 is a novel regulator of survival in human embryonic stem cells. Stem Cells 31:2833–2841

    Article  CAS  PubMed  Google Scholar 

  26. Lin Z, Guo H, Cao Y, Zohrabian S, Zhou P, Ma Q, Vandusen N, Guo Y, Zhang J, Stevens SM (2016) Acetylation of VGLL4 regulates Hippo-YAP signaling and postnatal cardiac growth. Dev Cell 39:466-479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Estarás C, Benner C, Jones KA (2015) SMADs and YAP compete to control elongation of β-catenin:LEF-1-recruited RNAPII during hESC differentiation. Mol Cell 58:780–793

    Article  PubMed  PubMed Central  Google Scholar 

  28. Jiao S, Li C, Hao Q, Miao H, Zhang L, Li L, Zhou Z (2017) VGLL4 targets a TCF4-TEAD4 complex to coregulate Wnt and Hippo signalling in colorectal cancer. Nat Commun. https://doi.org/10.1038/ncomms14058

    Article  PubMed  PubMed Central  Google Scholar 

  29. Zhang W, Xu J, Li J, Guo T, Jiang D, Feng X, Ma X, He L, Wu W, Yin M (2018) The TEA domain family transcription factor TEAD4 represses murine adipogenesis by recruiting the cofactors VGLL4 and CtBP2 into a transcriptional complex. J Biol Chem 293:17119–17134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Teng AC, Kuraitis D, Deeke SA, Ahmadi A, Dugan SG, Cheng BL, Crowson MG, Burgon PG, Suuronen EJ, Chen HH, Stewart AF (2010) IRF2BP2 is a skeletal and cardiac muscle-enriched ischemia-inducible activator of VEGFA expression. FASEB J 24(12):4825-4834

    CAS  PubMed  Google Scholar 

  31. Wang Y, Liu X, Xie B, Yuan H, Zhang Y, Zhu J (2020) The NOTCH1-dependent HIF1α/VGLL4/IRF2BP2 oxygen sensing pathway triggers erythropoiesis terminal differentiation. Redox Biol 28:101313

    Article  CAS  PubMed  Google Scholar 

  32. Wang Z, Quan Y, Hu M, Xu Y, Chen Y, Jin P, Ma J, Chen X, Fan J, Fan X, Gong Y, Li M, Wang Y (2023) VGLL4-TEAD1 promotes vascular smooth muscle cell differentiation from human pluripotent stem cells via TET2. J Mol Cell Cardiol 176:21–32

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank all members of the Institute of Hypoxia Medicine who contributed to this work. We appreciate the great help of Dr. Lei Zhang (Institute of Biochemistry and Cell Biology at the Chinese Academy of Sciences), Dr. Jiaxi Zhou (State Key Laboratory of Experimental Hematology in China), Dr. Bin Zhao (Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University), and Faxing Yu (School of Life Sciences, Fudan University) for this project.

Funding

This work was supported by the National Key Research and Development Program of China (2019YFA0802702), National Natural Science Foundation of China (82070487, 81670454, and 32070804), Natural Science Foundation of Zhejiang Province (LY21C120003), and Scientific Research Start-up Fund of Wenzhou Medical University (QTJ15029).

Author information

Authors and Affiliations

Authors

Contributions

YW and YY contributed to the conception, design, and financial support of the study. YQ, MH, and JJ performed the experiments, analyzed and interpreted the data. JM, ML, JF, XF, and YG assisted with experiments. YW and YQ analyzed the data and wrote the manuscript. YW and YY edited the manuscript. All authors have read and approved the final manuscript.

Corresponding authors

Correspondence to Yang Yang or Yongyu Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethical approval and Consent to participate

This study was approved by the Medical Research Ethics Committee of Wenzhou Medical University (No.2019–214). The investigation conformed to the principles outlined in the Declaration of Helsinki.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Quan, Y., Hu, M., Jiang, J. et al. VGLL4 promotes vascular endothelium specification via TEAD1 in the vascular organoids and human pluripotent stem cells-derived endothelium model. Cell. Mol. Life Sci. 80, 215 (2023). https://doi.org/10.1007/s00018-023-04858-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00018-023-04858-w

Keywords

Navigation