Skip to main content
Log in

A C-type lectin induces NLRP3 inflammasome activation via TLR4 interaction in human peripheral blood mononuclear cells

  • Original Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Lectins are a large group of proteins found in many snake venoms. BjcuL is a C-type lectin from Bothrops jararacussu snake venom that does not present cytotoxicity action on human peripheral blood mononuclear cells (PBMCs) at concentrations of 5 and 10 μg/mL. BjcuL demonstrates an immunomodulatory role in PBMCs with the production of pro- and anti-inflammatory cytokines (IL-2, IL-10, IFN-γ, IL-6, TNF-α, and IL-17) in addition to stimulate T cells to produce reactive oxygen species (ROS) that could play a role in the acute inflammatory reaction observed in the victims. Inflammasomes are an essential arm in cells of innate immunity to detect and sense a range of endogenous or exogenous, sterile, or infectious stimuli to elicit cellular responses and effector mechanisms. NLRP3 inflammasome is a significant target for this study, because the lectin is responsible for leukocyte activation stimulating the release of inflammatory mediators, which results in dynamic cellular responses to remove the detrimental process to the body in snakebites. Thus, this study aimed to investigate how isolated BjcuL from B. jararacussu venom affects NLRP3 inflammasome activation on PBMCs. For this, the cells were isolated by density gradient and incubated with BjcuL at different periods and concentrations for the evaluation of the activation of the NLRP3 inflammasome through gene and protein expressions of ASC, CASPASE-1, and NLRP3 by RT-qPCR, Western blot, and immunofluorescence, as well as the participation of Toll-like receptor 4 (TLR4) and ROS in the IL-1β production, a product resultant of the NLRP3 inflammasome activation. Herein, BjcuL interacts with TLR4 as demonstrated by in vitro and in silico studies and induces cytokines release via NF-κB signaling. By genic and protein expression assays, BjcuL activates NLRP3 inflammasome, and the pharmacological modulation with LPS-RS, an antagonist of TLR4; LPS-SM, an agonist of TLR4; MCC950, a specific NLRP3 inhibitor, and rotenone, an inhibitor of mitochondrial ROS, confirmed the participation of TLR4 and ROS in the NLRP3 inflammasome activation and IL-1β liberation. The effects of BjcuL on the regulation and activation of the NLRP3 inflammasome complex via TLR4 activation with ROS participation may be determinant for the development of the inflammatory local effects seen in snakebite victims. In addition, in silico together with in vitro studies provide information that may be useful in the rational design of TLR agonists as well as new adjuvants for immunomodulatory therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

Data are available on request from the corresponding author. The data that support the findings of this study are available on request from the corresponding author Juliana P. Zuliani. The data are not publicly available due to state restrictions, and them containing information that could compromise research participant privacy/consent.

References

  1. Carvalho DD, Marangoni S, Oliveira B, Novello JC (1998) Isolation and characterization of a new lectin from the venom of the snake Bothrops jararacussu. IUBMB Life 44:933–938. https://doi.org/10.1080/15216549800201992

    Article  CAS  Google Scholar 

  2. Drickamer K (1988) Two distinct classes of carbohydrate-recognition domains in animal lectins. J Biol Chem 263:9557–9560

    Article  CAS  PubMed  Google Scholar 

  3. de Carvalho DD, Schmitmeier S, Novello JC, Markland FS (2001) Effect of BJcuL (a lectin from the venom of the snake Bothrops jararacussu) on adhesion and growth of tumor and endothelial cells. Toxicon 39:1471–1476. https://doi.org/10.1016/S0041-0101(01)00106-4

    Article  PubMed  Google Scholar 

  4. de Carvalho DD, Marangoni S, Novello JC (2002) Primary structure characterization of Bothrops jararacussu snake venom lectin. J Protein Chem 21:43–50. https://doi.org/10.1023/A:1014131115951

    Article  PubMed  Google Scholar 

  5. Kilpatrick D (2002) Animal lectins: a historical introduction and overview. Biochim Biophys Acta (BBA) Gen Subj. 1572:187–197. https://doi.org/10.1016/S0304-4165(02)00308-2

    Article  CAS  Google Scholar 

  6. Lomonte B, Rojas G, Gutiérrez J, Ramírez G (1990) Isolation of a galactose-binding lectin from the venom of the snake Bothrops godmani (Godmann’s pit viper). Toxicon 28:75–81. https://doi.org/10.1016/0041-0101(90)90008-U

    Article  CAS  PubMed  Google Scholar 

  7. Elífio-Esposito SL, Hess PL, Moreno AN, Lopes-Ferreira M, Ricart CAO, Souza MV, Hasselman-Zielinski F, Becker JA, Pereira LF (2007) A C-type lectin from Bothrops jararacussu venom can adhere to extracellular matrix proteins and induce the rolling of leukocytes. J Venom Anim Toxins Incl Trop Dis. https://doi.org/10.1590/S1678-91992007000400009

    Article  Google Scholar 

  8. Silva FP, Alexandre GMC, Ramos CHI, De-Simone SG (2008) On the quaternary structure of a C-type lectin from Bothrops jararacussu venom—BJ-32 (BjcuL). Toxicon 52:944–953. https://doi.org/10.1016/j.toxicon.2008.10.014

    Article  CAS  PubMed  Google Scholar 

  9. Kwasniewski FH, Kayano AM, Fukunaga AN, da Silva Setubal S, Soares AM, Zuliani JP (2022) Bothrops jararacussu snake venom lectin induces mast cell activation and vascular permeability enhance in an animal model. Toxicon 205:20–23. https://doi.org/10.1016/j.toxicon.2021.11.006

    Article  CAS  PubMed  Google Scholar 

  10. Sharon N, Lis H (1979) Lectins: cell-agglutinating and sugar-specific proteins. Science 177(1972):949–959. https://doi.org/10.1126/science.177.4053.949

    Article  Google Scholar 

  11. Panunto PC, da Silva MA, Linardi A, Buzin MP, Melo SESFC, Mello SM, Prado-Franceschi J, Hyslop S (2006) Biological activities of a lectin from Bothrops jararacussu snake venom. Toxicon 47:21–31. https://doi.org/10.1016/j.toxicon.2005.08.012

    Article  CAS  PubMed  Google Scholar 

  12. Carneiro-Goetten JOL, Rodrigues BS, Nogoceke RA, do Nascimento TG, Moreno-Amaral AN, Stuelp-Campelo PM, Elifio-Esposito S (2020) Neutrophils activated by BJcuL, a C-type lectin isolated from Bothrops jararacussu venom, decrease the invasion potential of neuroblastoma SK-N-SH cells in vitro. J Venom Anim Toxins Incl Trop Dis. https://doi.org/10.1590/1678-9199-jvatitd-2019-0073

    Article  PubMed Central  PubMed  Google Scholar 

  13. Pires WL, de Castro OB, Kayano AM, da Silva Setúbal S, Pontes AS, Nery NM, Paloschi MV, dos Santos Pereira S, Stábeli RG, Fernandes CFC, Soares AM, Zuliani JP (2017) Effect of BjcuL, a lectin isolated from Bothrops jararacussu, on human peripheral blood mononuclear cells. Toxicol In Vitro 41:30–41. https://doi.org/10.1016/j.tiv.2017.02.003

    Article  CAS  PubMed  Google Scholar 

  14. Pereira-Bittencourt M, Carvalho DD, Gagliardi AR, Collins DC (1999) The effect of a lectin from the venom of the snake, Bothrops jararacussu, on tumor cell proliferation. Anticancer Res 19:4023–4025

    CAS  PubMed  Google Scholar 

  15. Pires WL, Kayano AM, Castro OB, Paloschi MV, Lopes JA, Boeno CN, dos Pereira S, Antunes MM, Rodrigues MMS, Stábeli RG, Fernandes CFC, Soares AM, Zuliani JP (2019) Lectin isolated from Bothrops jararacussu venom induces IL-10 release by TCD4+ cells and TNF-α release by monocytes and natural killer cells. J Leukoc Biol 106:595–605. https://doi.org/10.1002/JLB.MA1118-463R

    Article  CAS  PubMed  Google Scholar 

  16. Zheng D, Liwinski T, Elinav E (2020) Inflammasome activation and regulation: toward a better understanding of complex mechanisms. Cell Discov 6:36. https://doi.org/10.1038/s41421-020-0167-x

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Boeno CN, Paloschi MV, Lopes JA, Pires WL, da Setúbal S, Evangelista JR, Soares AM, Zuliani JP (2019) Inflammasome activation induced by a snake venom Lys49-phospholipase A2 homologue. Toxins (Basel) 12:22. https://doi.org/10.3390/toxins12010022

    Article  CAS  PubMed  Google Scholar 

  18. Ranéia e Silva PA, de Lima DS, Mesquita Luiz JP, Câmara NOS, Alves-Filho JCF, Pontillo A, Bortoluci KR, Faquim-Mauro EL (2021) Inflammatory effect of Bothropstoxin-I from Bothrops jararacussu venom mediated by NLRP3 inflammasome involves ATP and P2X7 receptor. Clin Sci 135:687–701. https://doi.org/10.1042/CS20201419

    Article  Google Scholar 

  19. Paloschi MV, Boeno CN, Lopes JA, Rego CMA, Silva MDS, Santana HM, Serrath SN, Ikenohuchi YJ, Farias BJC, Felipin KP, Nery NM, dos Reis VP, de Lima Lemos CT, Evangelista JR, da Silva Setúbal S, Soares AM, Zuliani JP (2022) Reactive oxygen species-dependent-NLRP3 inflammasome activation in human neutrophils induced by l-amino acid oxidase derived from Calloselasma rhodostoma venom. Life Sci 308:120962. https://doi.org/10.1016/j.lfs.2022.120962

    Article  CAS  PubMed  Google Scholar 

  20. Rego CMA, Francisco AF, Boeno CN, Paloschi MV, Lopes JA, Silva MDS, Santana HM, Serrath SN, Rodrigues JE, Lemos CTL, Dutra RSS, da Cruz JN, dos Santos CBR, da Setúbal S, Fontes MRM, Soares AM, Pires WL, Zuliani JP (2022) Inflammasome NLRP3 activation induced by Convulxin, a C-type lectin-like isolated from Crotalus durissus terrificus snake venom. Sci Rep 12:4706. https://doi.org/10.1038/s41598-022-08735-7

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Silva MDS, Lopes JA, Paloschi MV, Boeno CN, Rego CMA, de Oliveira Sousa O, Santana HM, dos Reis VP, Serrath SN, da Setúbal S, Lima AM, Soares AM, Zuliani JP (2022) NLRP3 inflammasome activation in human peripheral blood mononuclear cells induced by venoms secreted PLA2s. Int J Biol Macromol 202:597–607. https://doi.org/10.1016/j.ijbiomac.2022.01.107

    Article  CAS  PubMed  Google Scholar 

  22. Homsi-Brandeburgo MI, Queiroz LS, Santo-Neto H, Rodrigues-Simioni L, Giglio JR (1988) Fractionation of Bothrops jararacussu snake venom: Partial chemical characterization and biological activity of bothropstoxin. Toxicon 26:615–627. https://doi.org/10.1016/0041-0101(88)90244-9

    Article  CAS  PubMed  Google Scholar 

  23. Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative CT method. Nat Protoc 3:1101–1108. https://doi.org/10.1038/nprot.2008.73

    Article  CAS  PubMed  Google Scholar 

  24. Pontes AS, da Setúbal S, Xavier CV, Lacouth-Silva F, Kayano AM, Pires WL, Nery NM, Boeri de Castro O, da Silva SD, Calderon LA, Stábeli RG, Soares AM, Zuliani JP (2014) Effect of l-amino acid oxidase from Calloselasma rhodosthoma snake venom on human neutrophils. Toxicon 80:27–37. https://doi.org/10.1016/j.toxicon.2013.12.013

    Article  CAS  PubMed  Google Scholar 

  25. Ha E-M, Lee K-A, Park SH, Kim S-H, Nam H-J, Lee H-Y, Kang D, Lee W-J (2009) Regulation of DUOX by the Gαq-phospholipase Cβ-Ca2+ pathway in Drosophila gut immunity. Dev Cell 16:386–397. https://doi.org/10.1016/j.devcel.2008.12.015

    Article  CAS  PubMed  Google Scholar 

  26. Xing Y, Cao R, Hu H-M (2016) TLR and NLRP3 inflammasome-dependent innate immune responses to tumor-derived autophagosomes (DRibbles). Cell Death Dis 7:e2322. https://doi.org/10.1038/cddis.2016.206

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Tapia-Abellán A, Angosto-Bazarra D, Martínez-Banaclocha H, de Torre-Minguela C, Cerón-Carrasco JP, Pérez-Sánchez H, Arostegui JI, Pelegrin P (2019) MCC950 closes the active conformation of NLRP3 to an inactive state. Nat Chem Biol 15:560–564. https://doi.org/10.1038/s41589-019-0278-6

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. van Dijk A, Anten J, Bakker A, Evers N, Hoekstra AT, Chang J-C, Scheenstra MR, Veldhuizen EJA, Netea MG, Berkers CR, Haagsman HP (2022) Innate immune training of human macrophages by cathelicidin analogs. Front Immunol. https://doi.org/10.3389/fimmu.2022.777530

    Article  PubMed Central  PubMed  Google Scholar 

  29. Nishinaka T, Hatipoglu OF, Wake H, Watanabe M, Toyomura T, Mori S, Nishibori M, Takahashi H (2022) Glycolaldehyde-derived advanced glycation end products suppress STING/TBK1/IRF3 signaling via CD36. Life Sci 310:121116. https://doi.org/10.1016/j.lfs.2022.121116

    Article  CAS  PubMed  Google Scholar 

  30. Kozakov D, Hall DR, Xia B, Porter KA, Padhorny D, Yueh C, Beglov D, Vajda S (2017) The ClusPro web server for protein–protein docking. Nat Protoc 12:255–278. https://doi.org/10.1038/nprot.2016.169

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Huang J, Rauscher S, Nawrocki G, Ran T, Feig M, de Groot BL, Grubmüller H, MacKerell AD (2017) CHARMM36m: an improved force field for folded and intrinsically disordered proteins. Nat Methods 14:71–73. https://doi.org/10.1038/nmeth.4067

    Article  CAS  PubMed  Google Scholar 

  32. Kutzner C, Páll S, Fechner M, Esztermann A, Groot BL, Grubmüller H (2019) More bang for your buck: improved use of GPU nodes for GROMACS 2018. J Comput Chem 40:2418–2431. https://doi.org/10.1002/jcc.26011

    Article  CAS  PubMed  Google Scholar 

  33. Berendsen HJC, Postma JPM, van Gunsteren WF, DiNola A, Haak JR (1984) Molecular dynamics with coupling to an external bath. J Chem Phys 81:3684–3690. https://doi.org/10.1063/1.448118

    Article  CAS  Google Scholar 

  34. Bussi G, Donadio D, Parrinello M (2007) Canonical sampling through velocity rescaling. J Chem Phys 126:014101. https://doi.org/10.1063/1.2408420

    Article  CAS  PubMed  Google Scholar 

  35. Hoover WG (1985) Canonical dynamics: equilibrium phase-space distributions. Phys Rev A (Coll Park) 31:1695–1697. https://doi.org/10.1103/PhysRevA.31.1695

    Article  CAS  Google Scholar 

  36. Parrinello M, Rahman A (1981) Polymorphic transitions in single crystals: a new molecular dynamics method. J Appl Phys 52:7182–7190. https://doi.org/10.1063/1.328693

    Article  CAS  Google Scholar 

  37. Daura X, Gademann K, Jaun B, Seebach D, van Gunsteren WF, Mark AE (1999) Peptide folding: when simulation meets experiment. Angew Chem Int Ed 38:236–240. https://doi.org/10.1002/(SICI)1521-3773(19990115)38:1/2%3c236::AID-ANIE236%3e3.0.CO;2-M

    Article  CAS  Google Scholar 

  38. Xue LC, Rodrigues JP, Kastritis PL, Bonvin AM, Vangone A (2016) PRODIGY: a web server for predicting the binding affinity of protein–protein complexes. Bioinformatics. https://doi.org/10.1093/bioinformatics/btw514

    Article  PubMed Central  PubMed  Google Scholar 

  39. Scheurer M, Bigalke M (2018) Microplastics in Swiss floodplain soils. Environ Sci Technol 52:3591–3598. https://doi.org/10.1021/acs.est.7b06003

    Article  CAS  PubMed  Google Scholar 

  40. Laskowski RA, Swindells MB (2011) LigPlot+: multiple ligand-protein interaction diagrams for drug discovery. J Chem Inf Model 51:2778–2786. https://doi.org/10.1021/ci200227u

    Article  CAS  PubMed  Google Scholar 

  41. Pettersen EF, Goddard TD, Huang CC, Meng EC, Couch GS, Croll TI, Morris JH, Ferrin TE (2021) UCSF ChimeraX: structure visualization for researchers, educators, and developers. Protein Sci 30:70–82. https://doi.org/10.1002/pro.3943

    Article  CAS  PubMed  Google Scholar 

  42. Dias-Netipanyj MF, Boldrini-Leite LM, Trindade ES, Moreno-Amaral AN, Elifio-Esposito S (2016) Bjcul, a snake venom lectin, modulates monocyte-derived macrophages to a pro-inflammatory profile in vitro. Toxicol In Vitro 33:118–124. https://doi.org/10.1016/j.tiv.2016.02.023

    Article  CAS  PubMed  Google Scholar 

  43. Cezarette GN, Sartim MA, Sampaio SV (2020) Inflammation and coagulation crosstalk induced by BJcuL, a galactose-binding lectin isolated from Bothrops jararacussu snake venom. Int J Biol Macromol 144:296–304. https://doi.org/10.1016/j.ijbiomac.2019.12.015

    Article  CAS  PubMed  Google Scholar 

  44. Liu T, Zhang L, Joo D, Sun S-C (2017) NF-κB signaling in inflammation. Signal Transduct Target Ther 2:17023. https://doi.org/10.1038/sigtrans.2017.23

    Article  PubMed Central  PubMed  Google Scholar 

  45. Coll RC, Robertson AAB, Chae JJ, Higgins SC, Muñoz-Planillo R, Inserra MC, Vetter I, Dungan LS, Monks BG, Stutz A, Croker DE, Butler MS, Haneklaus M, Sutton CE, Núñez G, Latz E, Kastner DL, Mills KHG, Masters SL, Schroder K, Cooper MA, O’Neill LAJ (2015) A small-molecule inhibitor of the NLRP3 inflammasome for the treatment of inflammatory diseases. Nat Med 21:248–255. https://doi.org/10.1038/nm.3806

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Pinilla M, Mazars R, Vergé R, Gorse L, Santoni K, Robinson S, Ann Toh G, Prouvensier L, Adonai Leon S, Hessel A, Péricat D, Murris M, Henras A, Cougoule C, Ravet E, Zhong FL, Planès R, Meunier E. EEF2-inactivating toxins engage the NLRP1 inflammasome and promote epithelial barrier disruption upon Pseudomonas infection. https://doi.org/10.1101/2023.01.16.524164.

  47. He W, Wan H, Hu L, Chen P, Wang X, Huang Z, Yang Z-H, Zhong C-Q, Han J (2015) Gasdermin D is an executor of pyroptosis and required for interleukin-1β secretion. Cell Res 25:1285–1298. https://doi.org/10.1038/cr.2015.139

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Burdette BE, Esparza AN, Zhu H, Wang S (2021) Gasdermin D in pyroptosis. Acta Pharm Sin B 11:2768–2782. https://doi.org/10.1016/j.apsb.2021.02.006

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Park BS, Song DH, Kim HM, Choi B-S, Lee H, Lee J-O (2009) The structural basis of lipopolysaccharide recognition by the TLR4–MD-2 complex. Nature 458:1191–1195. https://doi.org/10.1038/nature07830

    Article  CAS  PubMed  Google Scholar 

  50. Zelensky AN, Gready JE (2005) The C-type lectin-like domain superfamily. FEBS J 272:6179–6217. https://doi.org/10.1111/j.1742-4658.2005.05031.x

    Article  CAS  PubMed  Google Scholar 

  51. Drickamer K, Taylor ME (2015) Recent insights into structures and functions of C-type lectins in the immune system. Curr Opin Struct Biol 34:26–34. https://doi.org/10.1016/j.sbi.2015.06.003

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Drickamer K, Taylor ME (1993) Biology of animal lectins. Annu Rev Cell Biol 9:237–264. https://doi.org/10.1146/annurev.cb.09.110193.001321

    Article  CAS  PubMed  Google Scholar 

  53. Strathmann M, Wingender J, Flemming H-C (2002) Application of fluorescently labeled lectins for the visualization and biochemical characterization of polysaccharides in biofilms of Pseudomonas aeruginosa. J Microbiol Methods 50:237–248. https://doi.org/10.1016/S0167-7012(02)00032-5

    Article  CAS  PubMed  Google Scholar 

  54. Huang Y, Xu W, Zhou R (2021) NLRP3 inflammasome activation and cell death. Cell Mol Immunol 18:2114–2127. https://doi.org/10.1038/s41423-021-00740-6

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Franchi L, Eigenbrod T, Muñoz-Planillo R, Nuñez G (2009) The inflammasome: a caspase-1-activation platform that regulates immune responses and disease pathogenesis. Nat Immunol 10:241–247. https://doi.org/10.1038/ni.1703

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Bauernfeind FG, Horvath G, Stutz A, Alnemri ES, MacDonald K, Speert D, Fernandes-Alnemri T, Wu J, Monks BG, Fitzgerald KA, Hornung V, Latz E (2009) Cutting edge: NF-κB activating pattern recognition and cytokine receptors license NLRP3 inflammasome activation by regulating NLRP3 expression. J Immunol 183:787–791. https://doi.org/10.4049/jimmunol.0901363

    Article  CAS  PubMed  Google Scholar 

  57. Abais JM, Xia M, Zhang Y, Boini KM, Li P-L (2015) Redox regulation of NLRP3 inflammasomes: ROS as trigger or effector? Antioxid Redox Signal 22:1111–1129. https://doi.org/10.1089/ars.2014.5994

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  58. Wang K, Sun Q, Zhong X, Zeng M, Zeng H, Shi X, Li Z, Wang Y, Zhao Q, Shao F, Ding J (2020) Structural mechanism for GSDMD targeting by autoprocessed caspases in pyroptosis. Cell 180:941-955.e20. https://doi.org/10.1016/j.cell.2020.02.002

    Article  CAS  PubMed  Google Scholar 

  59. Zhou B, Abbott DW (2021) Gasdermin E permits interleukin-1 beta release in distinct sublytic and pyroptotic phases. Cell Rep 35:108998. https://doi.org/10.1016/j.celrep.2021.108998

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  60. Marrack P, McKee AS, Munks MW (2009) Towards an understanding of the adjuvant action of aluminium. Nat Rev Immunol 9:287–293. https://doi.org/10.1038/nri2510

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  61. Garcia MM, Goicoechea C, Molina-Álvarez M, Pascual D (2020) Toll-like receptor 4: a promising crossroads in the diagnosis and treatment of several pathologies. Eur J Pharmacol 874:172975. https://doi.org/10.1016/j.ejphar.2020.172975

    Article  CAS  PubMed  Google Scholar 

  62. ul Ain Q, Batool M, Choi S (2020) TLR4-targeting therapeutics: structural basis and computer-aided drug discovery approaches. Molecules 25:627. https://doi.org/10.3390/molecules25030627

    Article  CAS  Google Scholar 

  63. de Oliveira AA, Faustino J, de Lima ME, Menezes R, Nunes KP (2019) Unveiling the Interplay between the TLR4/MD2 complex and HSP70 in the human cardiovascular system: a computational approach. Int J Mol Sci 20:3121. https://doi.org/10.3390/ijms20133121

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  64. Ashtekar AR, Zhang P, Katz J, Deivanayagam CCS, Rallabhandi P, Vogel SN, Michalek SM (2008) TLR4-mediated activation of dendritic cells by the heat shock protein DnaK from Francisella tularensis. J Leukoc Biol 84:1434–1446. https://doi.org/10.1189/jlb.0308215

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  65. Bulut Y, Faure E, Thomas L, Karahashi H, Michelsen KS, Equils O, Morrison SG, Morrison RP, Arditi M (2002) Chlamydial heat shock protein 60 activates macrophages and endothelial cells through toll-like receptor 4 and MD2 in a MyD88-dependent pathway. J Immunol 168:1435–1440. https://doi.org/10.4049/jimmunol.168.3.1435

    Article  CAS  PubMed  Google Scholar 

  66. Chen S-T, Liao J-H, Huang K-F, Lee I-M, Wong W-T, Wu S-H, Hua K-F (2021) A GalNAc/Gal-specific lectin modulates immune responses via toll-like receptor 4 independently of carbohydrate-binding ability. Chem Commun 57:6209–6212. https://doi.org/10.1039/D1CC01834E

    Article  CAS  Google Scholar 

  67. Ricci-Azevedo R, Roque-Barreira M-C, Gay NJ (2017) Targeting and recognition of toll-like receptors by plant and pathogen lectins. Front Immunol. https://doi.org/10.3389/fimmu.2017.01820

    Article  PubMed Central  PubMed  Google Scholar 

  68. Zhang S, Yu M, Guo Q, Li R, Li G, Tan S, Li X, Wei Y, Wu M (2015) Annexin A2 binds to endosomes and negatively regulates TLR4-triggered inflammatory responses via the TRAM-TRIF pathway. Sci Rep 5:15859. https://doi.org/10.1038/srep15859

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  69. Roelofs MF, Boelens WC, Joosten LAB, Abdollahi-Roodsaz S, Geurts J, Wunderink LU, Schreurs BW, van den Berg WB, Radstake TRDJ (2006) Identification of small heat shock protein B8 (HSP22) as a novel TLR4 ligand and potential involvement in the pathogenesis of rheumatoid arthritis. J Immunol 176:7021–7027. https://doi.org/10.4049/jimmunol.176.11.7021

    Article  CAS  PubMed  Google Scholar 

  70. ben Haij N, Leghmari K, Planès R, Thieblemont N, Bahraoui E (2013) HIV-1 Tat protein binds to TLR4–MD2 and signals to induce TNF-α and IL-10. Retrovirology 10:123. https://doi.org/10.1186/1742-4690-10-123

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  71. Sartim MA, Riul TB, del Cistia-Andrade C, Stowell SR, Arthur CM, Sorgi CA, Faccioli LH, Cummings RD, Dias-Baruffi M, Sampaio SV (2014) Galatrox is a C-type lectin in Bothrops atrox snake venom that selectively binds LacNAc-terminated glycans and can induce acute inflammation. Glycobiology 24:1010–1021. https://doi.org/10.1093/glycob/cwu061

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  72. Walker JR, Nagar B, Young NM, Hirama T, Rini JM (2004) X-ray crystal structure of a galactose-specific C-type lectin possessing a novel decameric quaternary structure. Biochemistry 43:3783–3792. https://doi.org/10.1021/bi035871a

    Article  CAS  PubMed  Google Scholar 

  73. Eble J (2019) Structurally robust and functionally highly versatile—C-type lectin (-related) proteins in snake venoms. Toxins (Basel) 11:136. https://doi.org/10.3390/toxins11030136

    Article  CAS  PubMed  Google Scholar 

  74. Aguilar AP, Onofre TS, Fabres-Klein MH, Klein RC, Feio RN, de Oliveira Mendes TA, de Oliveira Barros Ribon A (2019) Carbohydrate-independent antibiofilm effect of Bothrops jararacussu lectin BJcuL on Staphylococcus aureus. Microb Pathog 137:103745. https://doi.org/10.1016/j.micpath.2019.103745

    Article  CAS  PubMed  Google Scholar 

  75. Sartim MA, Pinheiro MP, de Pádua RAP, Sampaio SV, Nonato MC (2017) Structural and binding studies of a C-type galactose-binding lectin from Bothrops jararacussu snake venom. Toxicon 126:59–69. https://doi.org/10.1016/j.toxicon.2016.12.007

    Article  CAS  PubMed  Google Scholar 

  76. Yamada C, Sano H, Shimizu T, Mitsuzawa H, Nishitani C, Himi T, Kuroki Y (2006) Surfactant protein A directly interacts with TLR4 and MD-2 and regulates inflammatory cellular response. J Biol Chem 281:21771–21780. https://doi.org/10.1074/jbc.M513041200

    Article  CAS  PubMed  Google Scholar 

  77. Sun S, He M, VanPatten S, Al-Abed Y (2019) Mechanistic insights into high mobility group box-1 (HMGb1)-induced Toll-like receptor 4 (TLR4) dimer formation. J Biomol Struct Dyn 37:3721–3730. https://doi.org/10.1080/07391102.2018.1526712

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The authors express their gratitude to Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), and Fundação de Amparo à Pesquisa do Estado de Rondônia (FAPERO) for the financial support. The authors would like to thank the Network Technological Platforms from FIOCRUZ, for the support and financing of the services provided by the Flow Cytometry and, Bioprospecting and Molecular Interaction facilities/FIOCRUZ-Rondonia. The authors would also like to Msc. Braz Junior Campos Farias for technical assistance. This study was supported by grants (428774/2016-4 and 311696/2021-0) from Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq). Juliana Pavan Zuliani was a recipient of productivity grants 306672/2014-6 and 311696/2021-0 from Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and Yoda Janaína Ikenohuchi was the beneficiary of CAPES by Master fellowship.

Author information

Authors and Affiliations

Authors

Contributions

JPZ and YJI designed the study; YJI, MDSS, CMAR, SSS, AFF, CNB, HMS, KPF, and MVP performed the experiments; AFF and MRMF performed the bioinformatics experiments; YJI, HMS, CMAR, MDSS, KPF, MVP, CNB, and SSS collected and analyzed the data; JPZ, SSS, and AMS provided reagents; JPZ, YJI, MVP, AFF, AFF, and MRMF wrote the manuscript; MVP formatted the figures. All authors discuss the results and comment on the manuscript at all stages.

Corresponding author

Correspondence to Juliana Pavan Zuliani.

Ethics declarations

Conflict of interest

There is no conflict-of-interest statement.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ikenohuchi, Y.J., Silva, M.D.S., Rego, C.M.A. et al. A C-type lectin induces NLRP3 inflammasome activation via TLR4 interaction in human peripheral blood mononuclear cells. Cell. Mol. Life Sci. 80, 188 (2023). https://doi.org/10.1007/s00018-023-04839-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00018-023-04839-z

Keywords

Navigation