Skip to main content
Log in

Persistence of FoxJ1+ Pax6+ Sox2+ ependymal cells throughout life in the human spinal cord

  • Original Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

A Correction to this article was published on 15 July 2023

This article has been updated

Abstract

Ependymal cells lining the central canal of the spinal cord play a crucial role in providing a physical barrier and in the circulation of cerebrospinal fluid. These cells express the FOXJ1 and SOX2 transcription factors in mice and are derived from various neural tube populations, including embryonic roof and floor plate cells. They exhibit a dorsal–ventral expression pattern of spinal cord developmental transcription factors (such as MSX1, PAX6, ARX, and FOXA2), resembling an embryonic-like organization. Although this ependymal region is present in young humans, it appears to be lost with age. To re-examine this issue, we collected 17 fresh spinal cords from organ donors aged 37–83 years and performed immunohistochemistry on lightly fixed tissues. We observed cells expressing FOXJ1 in the central region in all cases, which co-expressed SOX2 and PAX6 as well as RFX2 and ARL13B, two proteins involved in ciliogenesis and cilia-mediated sonic hedgehog signaling, respectively. Half of the cases exhibited a lumen and some presented portions of the spinal cord with closed and open central canals. Co-staining of FOXJ1 with other neurodevelopmental transcription factors (ARX, FOXA2, MSX1) and NESTIN revealed heterogeneity of the ependymal cells. Interestingly, three donors aged > 75 years exhibited a fetal-like regionalization of neurodevelopmental transcription factors, with dorsal and ventral ependymal cells expressing MSX1, ARX, and FOXA2. These results provide new evidence for the persistence of ependymal cells expressing neurodevelopmental genes throughout human life and highlight the importance of further investigation of these cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article (and its supplementary information files).

Change history

References

  1. Stenudd M, Sabelström H, Llorens-Bobadilla E et al (2022) Identification of a discrete subpopulation of spinal cord ependymal cells with neural stem cell properties. Cell Rep 38:110440. https://doi.org/10.1016/j.celrep.2022.110440

    Article  CAS  PubMed  Google Scholar 

  2. Xing L, Anbarchian T, Tsai JM et al (2018) Wnt/β-catenin signaling regulates ependymal cell development and adult homeostasis. Proc Natl Acad Sci USA 115:E5954–E5962. https://doi.org/10.1073/pnas.1803297115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Fu H, Qi Y, Tan M et al (2003) Molecular mapping of the origin of postnatal spinal cord ependymal cells: evidence that adult ependymal cells are derived from Nkx6.1+ ventral neural progenitor cells. J Comp Neurol 456:237–244. https://doi.org/10.1002/cne.10481

    Article  CAS  PubMed  Google Scholar 

  4. Hamilton LK, Truong MKV, Bednarczyk MR et al (2009) Cellular organization of the central canal ependymal zone, a niche of latent neural stem cells in the adult mammalian spinal cord. Neuroscience 164:1044–1056. https://doi.org/10.1016/j.neuroscience.2009.09.006

    Article  CAS  PubMed  Google Scholar 

  5. Milich LM, Choi JS, Ryan C et al (2021) Single-cell analysis of the cellular heterogeneity and interactions in the injured mouse spinal cord. J Exp Med 218:e20210040. https://doi.org/10.1084/jem.20210040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Alfaro-Cervello C, Soriano-Navarro M, Mirzadeh Z et al (2012) Biciliated ependymal cell proliferation contributes to spinal cord growth. J Comp Neurol 520:3528–3552. https://doi.org/10.1002/cne.23104

    Article  PubMed  PubMed Central  Google Scholar 

  7. Marichal N, Reali C, Rehermann MI et al (2017) Progenitors in the ependyma of the spinal cord: a potential resource for self-repair after injury. Adv Exp Med Biol 1015:241–264. https://doi.org/10.1007/978-3-319-62817-2_13

    Article  PubMed  Google Scholar 

  8. Becker CG, Becker T, Hugnot J-P (2018) The spinal ependymal zone as a source of endogenous repair cells across vertebrates. Prog Neurobiol 170:67–80. https://doi.org/10.1016/j.pneurobio.2018.04.002

    Article  CAS  PubMed  Google Scholar 

  9. Deng S, Gan L, Liu C et al (2023) Roles of ependymal cells in the physiology and pathology of the central nervous system. Aging Dis 14:468–483. https://doi.org/10.14336/AD.2022.0826-1

    Article  PubMed  PubMed Central  Google Scholar 

  10. Ghazale H, Ripoll C, Leventoux N et al (2019) RNA profiling of the human and mouse spinal cord stem cell niches reveals an embryonic-like regionalization with MSX1+ roof-plate-derived cells. Stem Cell Rep 12:1159–1177. https://doi.org/10.1016/j.stemcr.2019.04.001

    Article  CAS  Google Scholar 

  11. Sabourin J-C, Ackema KB, Ohayon D et al (2009) A mesenchymal-like ZEB1(+) niche harbors dorsal radial glial fibrillary acidic protein-positive stem cells in the spinal cord. Stem Cells (Dayt Ohio) 27:2722–2733. https://doi.org/10.1002/stem.226

    Article  CAS  Google Scholar 

  12. Wilson L, Maden M (2005) The mechanisms of dorsoventral patterning in the vertebrate neural tube. Dev Biol 282:1–13. https://doi.org/10.1016/j.ydbio.2005.02.027

    Article  CAS  PubMed  Google Scholar 

  13. Pfenninger CV, Steinhoff C, Hertwig F, Nuber UA (2011) Prospectively isolated CD133/CD24-positive ependymal cells from the adult spinal cord and lateral ventricle wall differ in their long-term in vitro self-renewal and in vivo gene expression. Glia 59:68–81. https://doi.org/10.1002/glia.21077

    Article  PubMed  Google Scholar 

  14. Alfaro-Cervello C, Cebrian-Silla A, Soriano-Navarro M et al (2014) The adult macaque spinal cord central canal zone contains proliferative cells and closely resembles the human. J Comp Neurol 522:1800–1817. https://doi.org/10.1002/cne.23501

    Article  PubMed  Google Scholar 

  15. Cawsey T, Duflou J, Weickert CS, Gorrie CA (2015) Nestin-positive ependymal cells are increased in the human spinal cord after traumatic central nervous system injury. J Neurotrauma 32:1393–1402. https://doi.org/10.1089/neu.2014.3575

    Article  PubMed  PubMed Central  Google Scholar 

  16. Dromard C, Guillon H, Rigau V et al (2008) Adult human spinal cord harbors neural precursor cells that generate neurons and glial cells in vitro. J Neurosci Res 86:1916–1926. https://doi.org/10.1002/jnr.21646

    Article  CAS  PubMed  Google Scholar 

  17. Garcia-Ovejero D, Arevalo-Martin A, Paniagua-Torija B et al (2015) The ependymal region of the adult human spinal cord differs from other species and shows ependymoma-like features. Brain J Neurol 138:1583–1597. https://doi.org/10.1093/brain/awv089

    Article  Google Scholar 

  18. Kasantikul V, Netsky MG, James AE (1979) Relation of age and cerebral ventricle size to central canal in man. Morphological analysis. J Neurosurg 51:85–93. https://doi.org/10.3171/jns.1979.51.1.0085

    Article  CAS  PubMed  Google Scholar 

  19. Milhorat TH, Kotzen RM, Anzil AP (1994) Stenosis of central canal of spinal cord in man: incidence and pathological findings in 232 autopsy cases. J Neurosurg 80:716–722. https://doi.org/10.3171/jns.1994.80.4.0716

    Article  CAS  PubMed  Google Scholar 

  20. Paniagua-Torija B, Arevalo-Martin A, Ferrer I et al (2015) CB1 cannabinoid receptor enrichment in the ependymal region of the adult human spinal cord. Sci Rep 5:17745. https://doi.org/10.1038/srep17745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Rodrigo Albors A, Singer GA, Llorens-Bobadilla E et al (2023) An ependymal cell census identifies heterogeneous and ongoing cell maturation in the adult mouse spinal cord that changes dynamically on injury. Dev Cell 58:239-255.e10. https://doi.org/10.1016/j.devcel.2023.01.003

    Article  CAS  PubMed  Google Scholar 

  22. Saker E, Henry BM, Tomaszewski KA et al (2016) The human central canal of the spinal cord: a comprehensive review of its anatomy, embryology, molecular development, variants, and pathology. Cureus 8:e927. https://doi.org/10.7759/cureus.927

    Article  PubMed  PubMed Central  Google Scholar 

  23. Torrillas de la Cal A, Paniagua-Torija B, Arevalo-Martin A et al (2021) The structure of the spinal cord ependymal region in adult humans is a distinctive trait among mammals. Cells 10:2235. https://doi.org/10.3390/cells10092235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Yasui K, Hashizume Y, Yoshida M et al (1999) Age-related morphologic changes of the central canal of the human spinal cord. Acta Neuropathol (Berl) 97:253–259. https://doi.org/10.1007/s004010050982

    Article  CAS  PubMed  Google Scholar 

  25. Gilbert EAB, Lakshman N, Lau KSK, Morshead CM (2022) Regulating endogenous neural stem cell activation to promote spinal cord injury repair. Cells 11:846. https://doi.org/10.3390/cells11050846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Moreno-Manzano V (2020) Ependymal cells in the spinal cord as neuronal progenitors. Curr Opin Pharmacol 50:82–87. https://doi.org/10.1016/j.coph.2019.11.008

    Article  CAS  PubMed  Google Scholar 

  27. Sabelström H, Stenudd M, Frisén J (2014) Neural stem cells in the adult spinal cord. Exp Neurol 260:44–49. https://doi.org/10.1016/j.expneurol.2013.01.026

    Article  CAS  PubMed  Google Scholar 

  28. Weiss S, Dunne C, Hewson J et al (1996) Multipotent CNS stem cells are present in the adult mammalian spinal cord and ventricular neuroaxis. J Neurosci 16:7599–7609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Paniagua-Torija B, Norenberg M, Arevalo-Martin A et al (2018) Cells in the adult human spinal cord ependymal region do not proliferate after injury. J Pathol 246:415–421. https://doi.org/10.1002/path.5151

    Article  CAS  PubMed  Google Scholar 

  30. Bauchet L, Poulen G, Lonjon N et al (2022) Isolation and culture of precursor cells from the adult human spinal cord. Methods Mol Biol Clifton NJ 2389:103–110. https://doi.org/10.1007/978-1-0716-1783-0_10

    Article  CAS  Google Scholar 

  31. Mouritzen Dam A (1979) Shrinkage of the brain during histological procedures with fixation in formaldehyde solutions of different concentrations. J Hirnforsch 20:115–119

    CAS  PubMed  Google Scholar 

  32. Jacquet BV, Salinas-Mondragon R, Liang H et al (2009) FoxJ1-dependent gene expression is required for differentiation of radial glia into ependymal cells and a subset of astrocytes in the postnatal brain. Dev Camb Engl 136:4021–4031. https://doi.org/10.1242/dev.041129

    Article  CAS  Google Scholar 

  33. Georgala PA, Carr CB, Price DJ (2011) The role of Pax6 in forebrain development. Dev Neurobiol 71:690–709. https://doi.org/10.1002/dneu.20895

    Article  CAS  PubMed  Google Scholar 

  34. Chung M-I, Peyrot SM, LeBoeuf S et al (2012) RFX2 is broadly required for ciliogenesis during vertebrate development. Dev Biol 363:155–165. https://doi.org/10.1016/j.ydbio.2011.12.029

    Article  CAS  PubMed  Google Scholar 

  35. Lim YS, Chua CEL, Tang BL (2011) Rabs and other small GTPases in ciliary transport. Biol Cell 103:209–221. https://doi.org/10.1042/BC20100150

    Article  CAS  PubMed  Google Scholar 

  36. Bay SN, Long AB, Caspary T (2018) Disruption of the ciliary GTPase Arl13b suppresses Sonic hedgehog overactivation and inhibits medulloblastoma formation. Proc Natl Acad Sci USA 115:1570–1575. https://doi.org/10.1073/pnas.1706977115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Cho G, Lim Y, Cho I-T et al (2014) Arx together with FoxA2, regulates Shh floor plate expression. Dev Biol 393:137–148. https://doi.org/10.1016/j.ydbio.2014.06.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lee H, Thuret S (2018) Adult human hippocampal neurogenesis: controversy and evidence. Trends Mol Med 24:521–522. https://doi.org/10.1016/j.molmed.2018.04.002

    Article  PubMed  Google Scholar 

  39. Kempermann G, Gage FH, Aigner L et al (2018) Human adult neurogenesis: evidence and remaining questions. Cell Stem Cell 23:25–30. https://doi.org/10.1016/j.stem.2018.04.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wehrl HF, Bezrukov I, Wiehr S et al (2015) Assessment of murine brain tissue shrinkage caused by different histological fixatives using magnetic resonance and computed tomography imaging. Histol Histopathol 30:601–613. https://doi.org/10.14670/HH-30.601

    Article  CAS  PubMed  Google Scholar 

  41. Yadav A, Matson KJE, Li L et al (2023) A cellular taxonomy of the adult human spinal cord. Neuron 111:328-344.e7. https://doi.org/10.1016/j.neuron.2023.01.007

    Article  CAS  PubMed  Google Scholar 

  42. Spalding KL, Bhardwaj RD, Buchholz BA et al (2005) Retrospective birth dating of cells in humans. Cell 122:133–143. https://doi.org/10.1016/j.cell.2005.04.028

    Article  CAS  PubMed  Google Scholar 

  43. Sabelström H, Stenudd M, Réu P et al (2013) Resident neural stem cells restrict tissue damage and neuronal loss after spinal cord injury in mice. Science 342:637–640. https://doi.org/10.1126/science.1242576

    Article  CAS  PubMed  Google Scholar 

  44. Ren Y, Ao Y, O’Shea TM et al (2017) Ependymal cell contribution to scar formation after spinal cord injury is minimal, local and dependent on direct ependymal injury. Sci Rep 7:41122. https://doi.org/10.1038/srep41122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Meletis K, Barnabé-Heider F, Carlén M et al (2008) Spinal cord injury reveals multilineage differentiation of ependymal cells. PLoS Biol 6:e182. https://doi.org/10.1371/journal.pbio.0060182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Llorens-Bobadilla E, Chell JM, Le Merre P et al (2020) A latent lineage potential in resident neural stem cells enables spinal cord repair. Science. https://doi.org/10.1126/science.abb8795

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the French Agency of biomedicine and all Montpellier Biocampus facilities for help (RHEM, MRI) and excellent technical work. We also warmly thank all organ donors and their family as well as nurses and all medical staff from the Unit of Donation and Transplantation (Montpellier hospital). We thank Dr Ariel Levine (NIH, USA) for permission to use screen capture from the Human Spinal Cord snRNAseq Viewer (https://vmenon.shinyapps.io/humanspinalcord/)

Funding

This work was supported by grants from IRP (Switzerland, 2013), IRME (France, 2020), AFM (France, 2019), ANR ERANET Neuroniche (JP Hugnot, 2019), ARSEP (France, 2020). T Chevreau was supported by an AFM PhD fellowship.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Spinal cords were mainly extracted and collected by LB, RC, NL and GP. Chantal Ripoll designed and performed histology, quantifications and figure preparation. RC participated in histology, performed data analysis and quantifications. FV-L coordinated informed consents and spinal cord collections. The first draft of the manuscript was written by JPH and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.”

Corresponding author

Correspondence to Jean-Philippe Hugnot.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Ethical approval

This study was performed in line with the principles of the Declaration of Helsinki. Approval was granted to Dr Luc Bauchet by the French “Agence de la biomédecine”, n° SPGED19-3-4692, April, 2nd, 2019.

Consent to participate

Informed consent was obtained from relatives of organ donors included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary Figures S1–3 (PDF 5879 KB)

Supplementary  Table S1–4 (PDF 172 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ripoll, C., Poulen, G., Chevreau, R. et al. Persistence of FoxJ1+ Pax6+ Sox2+ ependymal cells throughout life in the human spinal cord. Cell. Mol. Life Sci. 80, 181 (2023). https://doi.org/10.1007/s00018-023-04811-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00018-023-04811-x

Keywords

Navigation