Skip to main content
Log in

Excessive iron inhibits insulin secretion via perturbing transcriptional regulation of SYT7 by OGG1

  • Original Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Although iron overload is closely related to the occurrence of type 2 diabetes mellitus (T2DM), the specific mechanism is unclear. Here, we found that excessive iron inhibited the secretion of insulin (INS) and impaired islet β cell function through downregulating Synaptotagmin 7 (SYT7) in iron overload model in vivo and in vitro. Our results further demonstrated that 8-oxoguanine DNA glycosylase (OGG1), a key protein in the DNA base excision repair, was an upstream regulator of SYT7. Interestingly, such regulation could be suppressed by excessive iron. Ogg1-null mice, iron overload mice and db/db mice exhibit reduced INS secretion, weakened β cell function and subsequently impaired glucose tolerance. Notably, SYT7 overexpression could rescue these phenotypes. Our data revealed an intrinsic mechanism by which excessive iron inhibits INS secretion through perturbing the transcriptional regulation of SYT7 by OGG1, which suggested that SYT7 was a potential target in clinical therapy for T2DM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Availability of data and materials

All data associated with this study are present in the paper or Supplementary Materials.

References

  1. Holman RR (2013) Optimal management of T2DM remains elusive. Nat Rev Endocrinol 9(2):67–68

    CAS  PubMed  Google Scholar 

  2. Chen L, Magliano DJ, Zimmet PZ (2011) The worldwide epidemiology of type 2 diabetes mellitus-present and future perspectives. Nat Rev Endocrinol 8(4):228–236

    PubMed  Google Scholar 

  3. Simcox JA, McClain DA (2013) Iron and diabetes risk. Cell Metab 17(3):329–341

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Zhang R, Huang X, Li Y, Yu Z, Wu Y, Zha B, Ding H, Zang S, Liu J (2021) Serum ferritin as a risk factor for type 2 diabetes mellitus, regulated by liver transferrin receptor 2. Endocr Connect 10(12):1513–1521

    PubMed  PubMed Central  Google Scholar 

  5. Azevedo-Martins AK, Lortz S, Lenzen S, Curi R, Eizirik DL, Tiedge M (2003) Improvement of the mitochondrial antioxidant defense status prevents cytokine-induced nuclear factor-κB activation in insulin-producing cells. Diabetes 52(1):93–101

    CAS  PubMed  Google Scholar 

  6. David SS, O’Shea VL, Kundu S (2007) Base-excision repair of oxidative DNA damage. Nature 447(7147):941–950

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Mao G, Pan X, Zhu BB, Zhang Y, Yuan F, Huang J, Lovell MA, Lee MP, Markesbery WR, Li GM, Gu L (2007) Identification and characterization of OGG1 mutations in patients with Alzheimer’s disease. Nucl Acids Res 35(8):2759–2766

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Gönül N, Kadioglu E, Kocabaş NA, Özkaya M, Karakaya AE, Karahalil B (2012) The role of GSTM1, GSTT1, GSTP1, and OGG1 polymorphisms in type 2 diabetes mellitus risk: a case–control study in a Turkish population. Gene 505(1):121–127

    PubMed  Google Scholar 

  9. Tyrberg B, Anachkov KA, Dib SA, Wang-Rodriguez J, Yoon KH, Levine F (2002) Islet expression of the DNA repair enzyme 8-oxoguanosine DNA glycosylase (Ogg1) in human type 2 diabetes. BMC Endocr Disord 2(1):1–10

    Google Scholar 

  10. Sampath H, Vartanian V, Rollins MR, Sakumi K, Nakabeppu Y, Lloyd RS (2012) 8-Oxoguanine DNA glycosylase (OGG1) deficiency increases susceptibility to obesity and metabolic dysfunction. PLoS ONE 7(12):e51697

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Ba X, Bacsi A, Luo J, Aguilera-Aguirre L, Zeng X, Radak Z, Brasier AR, Boldogh I (2014) 8-oxoguanine DNA glycosylase-1 augments proinflammatory gene expression by facilitating the recruitment of site-specific transcription factors. J Immunol 192(5):2384–2394

    CAS  PubMed  Google Scholar 

  12. Boldogh I, Hajas G, Aguilera-Aguirre L, Hegde ML, Radak Z, Bacsi A, Sur S, Hazra TK, Mitra S (2012) Activation of ras signaling pathway by 8-oxoguanine DNA glycosylase bound to its excision product, 8-oxoguanine. J Bio Chem 287(25):20769–20773

    CAS  Google Scholar 

  13. Fleming AM, Ding Y, Burrows CJ (2017) Oxidative DNA damage is epigenetic by regulating gene transcription via base excision repair. Proc Natl Acad Sci USA 114(10):2604–2609

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Wang W, Ma Y, Huang M, Liang W, Zhao X, Li Q, Wang S, Hu Z, He L, Gao T, Chen J, Pan F, Guo Z (2021) Asymmetrical arginine dimethylation of histone H4 by 8-oxoG/OGG1/PRMT1 is essential for oxidative stress-induced transcription activation. Free Radic Bio Med 164:175–186

    CAS  Google Scholar 

  15. Xiao X, Guo P, Prasadan K, Shiota C, Peirish L, Fischbach S, Song Z, Gaffar I, Wiersch J, El-Gohary Y, Husain SZ, Gittes GK (2014) Pancreatic cell tracing, lineage tagging and targeted genetic manipulations in multiple cell types using pancreatic ductal infusion of adeno-associated viral vectors and/or cell-tagging dyes. Nat Protoc 9(12):2719–2724

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Zhu YX, Zhou YC, Zhang Y, Sun P, Chang XA, Han X (2021) Protocol for in vivo and ex vivo assessments of glucose-stimulated insulin secretion in mouse islet β cells. STAR Protoc 2(3):100728

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Zhu Y, Shu T, Lin Y, Wang H, Yang J, Shi Y, Han X (2011) Inhibition of the receptor for advanced glycation end products (RAGE) protects pancreatic β-cells. Biochem Bioph Res Co 404(1):159–165

    CAS  Google Scholar 

  18. Huang Q, You W, Li Y, Sun Y, Zhou Y, Zhang Y, Liu D, Zhan S, Zhu Y, Han X (2018) Glucolipotoxicity-inhibited miR-299-5p regulates pancreatic β-cell function and survival. Diabetes 67(11):2280–2292

    CAS  PubMed  Google Scholar 

  19. Ci S, Xia W, Liang W, Qin L, Zhang Y, Dianov GL, Wang M, Zhao X, Wu C, Alagamuthu KK, Hu Z, He L, Pan F, Guo Z (2020) Src-mediated phosphorylation of GAPDH regulates its nuclear localization and cellular response to DNA damage. FASEB J 34(8):10443–10461

    CAS  PubMed  Google Scholar 

  20. Marku A, Galli A, Marciani P, Dule N, Perego C, Castagna M (2021) Iron metabolism in pancreatic beta-cell function and dysfunction. Cells 10(11):2841

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Sampath H, Lloyd RS (2019) Roles of OGG1 in transcriptional regulation and maintenance of metabolic homeostasis. DNA Repair 81:102667

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Gustavsson N, Lao Y, Maximov A, Chuang JC, Kostromina E, Repa JJ, Li C, Radda GK, Südhof TC, Han W (2008) Impaired insulin secretion and glucose intolerance in synaptotagmin-7 null mutant mice. Proc Natl Acad Sci USA 105(10):3992–3997

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Pang ZP, Südhof TC (2010) Cell biology of Ca2+-triggered exocytosis. Curr Opin Cell Biol 22(4):496–505

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Gerber SH, Südhof TC (2002) Molecular determinants of regulated exocytosis. Diabetes 51(suppl 1):S3–S11

    CAS  PubMed  Google Scholar 

  25. Gandini MA, Sandoval A, González-Ramírez R, Mori Y, de Waard M, Felix R (2011) Functional coupling of Rab3-interacting molecule 1 (RIM1) and L-type Ca2+ channels in insulin release. J Bio Chem 286(18):15757–15765

    CAS  Google Scholar 

  26. Kwan EP, Xie L, Sheu L, Nolan CJ, Prentki M, Betz A, Brose N, Gaisano HY (2006) Munc13-1 deficiency reduces insulin secretion and causes abnormal glucose tolerance. Diabetes 55(5):1421–1429

    CAS  PubMed  Google Scholar 

  27. Yasuda T, Shibasaki T, Minami K, Takahashi H, Mizoguchi A, Uriu Y, Numata T, Mori Y, Miyazaki J, Miki T, Seino S (2010) Rim2α determines docking and priming states in insulin granule exocytosis. Cell Metab 12(2):117–129

    CAS  PubMed  Google Scholar 

  28. Zhang W, Efanov A, Yang SN, Fried G, Kölare S, Brown H, Zaitsev S, Berggren PO, Meister B (2000) Munc-18 associates with syntaxin and serves as a negative regulator of exocytosis in the pancreatic β-cell. J Bio Chem 275(52):41521–41527

    CAS  Google Scholar 

  29. Cheng K, Ho K, Stokes R, Scott C, Lau SM, Hawthorne WJ, O’Connell PJ, Loudovaris T, Kay TW, Kulkarni RN, Okada T, Wang XL, Yim SH, Shah Y, Shane TG, Biankin AV, Kench JG, Laybutt DR, Gonzalez FJ, Kahn CR, Gunton JE (2010) Hypoxia-inducible factor-1α regulates β cell function in mouse and human islets. J Clin Invest 120(6):2171–2183

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Marquez R, Hettler F, Hausinger R, Schreck C, Landspersky T, Henkel L, Angerpointner C, Demir IE, Schiemann M, Bassermann F, Götze KS, Istvánffy R, Oostendorp RA (2021) Secreted factors from mouse embryonic fibroblasts maintain repopulating function of single cultured hematopoietic stem cells. Haematologica 106(10):2633

    CAS  Google Scholar 

  31. Moghadam PK, Jackson MB (2013) The functional significance of synaptotagmin diversity in neuroendocrine secretion. Front Endocrinol 4:124

    Google Scholar 

  32. Wang R, Hao W, Pan L, Boldogh I, Ba X (2018) The roles of base excision repair enzyme OGG1 in gene expression. Cell Mol Life Sci 75(20):3741–3750

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Zharkov DO, Rosenquist TA (2002) Inactivation of mammalian 8-oxoguanine-DNA glycosylase by cadmium (II): implications for cadmium genotoxicity. DNA Repair 1(8):661–670

    CAS  PubMed  Google Scholar 

  34. Ashcroft FM, Rorsman P (2012) Diabetes mellitus and the β cell: the last ten years. Cell 148(6):1160–1171

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Fonseca VA (2009) Defining and characterizing the progression of type 2 diabetes. Diabetes Care 32(suppl 2):S151–S156

    PubMed  PubMed Central  Google Scholar 

  36. Altamura S, Kopf S, Schmidt J, Müdder K, da Silva AR, Nawroth P, Muckenthaler MU (2017) Uncoupled iron homeostasis in type 2 diabetes mellitus. J Mol Med (Berl) 95(12):1387–1398

    CAS  PubMed  Google Scholar 

  37. Williams KH, Shackel NA, Gorrell MD, McLennan SV, Twigg SM (2013) Diabetes and nonalcoholic fatty liver disease: a pathogenic duo. Endocr Rev 34(1):84–129

    CAS  PubMed  Google Scholar 

  38. Dolai S, Xie L, Zhu D, Liang T, Qin T, Xie H, Kang Y, Chapman ER, Gaisano HY (2016) Synaptotagmin-7 functions to replenish insulin granules for exocytosis in human islet β-cells. Diabetes 65(7):1962–1976

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Rorsman P, Braun M (2013) Regulation of insulin secretion in human pancreatic islets. Annu Rev Physiol 75:155–179

    CAS  PubMed  Google Scholar 

  40. Van de Velde S, Wiater E, Tran M, Hwang Y, Cole PA, Montminy M (2019) CREB promotes beta cell gene expression by targeting its coactivators to tissue-specific enhancers. Mol Cell Biol 39(17):e00200-e219

    PubMed  PubMed Central  Google Scholar 

  41. Liu X, Li C, Yang Y, Liu X, Li R, Zhang M, Yin Y, Qu Y (2019) Synaptotagmin7 in twist-related protein 1-mediated epithelial-Mesenchymal transition of non-small cell lung cancer. EBioMedicine 46:42–53

    PubMed  PubMed Central  Google Scholar 

  42. Simone S, Gorin Y, Velagapudi C, Abboud HE, Habib SL (2008) Mechanism of oxidative DNA damage in diabetes: tuberin inactivation and downregulation of DNA repair enzyme 8-oxo-7, 8- dihydro-2’-deoxyguanosine-DNA glycosylase. Diabetes 57(10):2626–2636

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Rachek LI, Thornley NP, Grishko VI, LeDoux SP, Wilson GL (2006) Protection of INS-1 cells from free fatty acid-induced apoptosis by targeting hOGG1 to mitochondria. Diabetes 55(4):1022–1028

    CAS  PubMed  Google Scholar 

  44. Kaneto H, Katakami N, Matsuhisa M, Matsuoka TA (2010) Role of reactive oxygen species in the progression of type 2 diabetes and atherosclerosis. Mediat Inflamm 2010:453892

    Google Scholar 

  45. Gamberini MR, De Sanctis V, Gilli G (2008) Hypogonadism, diabetes mellitus, hypothyroidism, hypoparathyroidism: incidence and prevalence related to iron overload and chelation therapy in patients with thalassaemia major followed from 1980 to 2007 in the Ferrara Centre. Pediatr Endocr Rev Proc 6:158–169

    Google Scholar 

  46. Haery L, Deverman BE, Matho KS, Cetin A, Woodard K, Cepko C, Guerin KI, Rego MA, Ersing I, Bachle SM, Kamens J, Fan M (2019) Adeno-associated virus technologies and methods for targeted neuronal manipulation. Front Neuroanat 13:93

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Zhou C, Sun Y, Yan R, Liu Y, Zuo E, Gu C, Han L, Wei Y, Hu X, Zeng R, Li Y, Zhou H, Guo F, Yang H (2019) Off-target RNA mutation induced by DNA base editing and its elimination by mutagenesis. Nature 571(7764):275–278

    CAS  PubMed  Google Scholar 

  48. Ronzitti G, Gross DA, Mingozzi F (2020) Human immune responses to adeno-associated virus (AAV) vectors. Front Immunol 11:670

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Wu B, Wei S, Petersen N, Ali Y, Wang X, Bacaj T, Rorsman P, Hong W, Südhof TC, Han W (2015) Synaptotagmin-7 phosphorylation mediates GLP-1-dependent potentiation of insulin secretion from β-cells. Proc Natl Acad Sci USA 112(32):9996–10001

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the scholars for their selfless help in this research. Dr. Rufeng Xu, Dr. Yunxia Zhu, and Prof. Xiao Han from Nanjing Medical University instructed the intraductal virus infusion. Prof. Wei Yu and Huicong Zhou from Taikang Xianlin Drum Tower Hospital helped to detect serum Fe2+. Prof. Xueqing Ba from Northeast Normal University provided the OGG1 overexpression plasmid. Dr. Lei Lan and Prof. Long Chen from Nanjing Normal University provided ultra-thin sectioning equipment. Dr. Jian Liu from Nanjing Normal University provided assistance with the experimental method. Dr. Lili Gu from Nanjing Normal University for answering the clinical questions.

Funding

This work was supported by National Natural Science Foundation of China (81872284, 32171407) and Jiangsu Graduate Research and Practice Innovation Program (KYCX20-1187).

Author information

Authors and Affiliations

Authors

Contributions

XZ and FP designed the study. XZ and YM obtained the data. MS, JX, SC and ZH contributed to and supervised the in vivo experimentation. MH and LH helped with the imaging analysis. MC and TJ provided support for the collection of outpatient cases. ZG provided funding support and support for communication with the administrative department. XZ drafted the manuscript. FP provided support for cooperation with the technology platform and manuscript revision. All authors reviewed and approved the manuscript. FP and ZG are the guarantors of this work and, as such, had full access to all of the data in the study and take responsibility for the integrity of the data and the accuracy of the data analysis.

Corresponding authors

Correspondence to Feiyan Pan or Zhigang Guo.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Feiyan Pan: Lead contact.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 11028 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, X., Ma, Y., Shi, M. et al. Excessive iron inhibits insulin secretion via perturbing transcriptional regulation of SYT7 by OGG1. Cell. Mol. Life Sci. 80, 159 (2023). https://doi.org/10.1007/s00018-023-04802-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00018-023-04802-y

Keywords

Navigation