Skip to main content

Advertisement

Log in

Proteomics analysis of prefrontal cortex of Alzheimer’s disease patients revealed dysregulated proteins in the disease and novel proteins associated with amyloid-β pathology

  • Original Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Background

Alzheimer’s disease (AD) is a progressive, chronic, and neurodegenerative disease, and the most common cause of dementia worldwide. Currently, the mechanisms underlying the disease are far from being elucidated. Thus, the study of proteins involved in its pathogenesis would allow getting further insights into the disease and identifying new markers for AD diagnosis.

Methods

We aimed here to analyze protein dysregulation in AD brain by quantitative proteomics to identify novel proteins associated with the disease. 10-plex TMT (tandem mass tags)-based quantitative proteomics experiments were performed using frozen tissue samples from the left prefrontal cortex of AD patients and healthy individuals and vascular dementia (VD) and frontotemporal dementia (FTD) patients as controls (CT). LC–MS/MS analyses were performed using a Q Exactive mass spectrometer.

Results

In total, 3281 proteins were identified and quantified using MaxQuant. Among them, after statistical analysis with Perseus (p value < 0.05), 16 and 155 proteins were defined as upregulated and downregulated, respectively, in AD compared to CT (Healthy, FTD and VD) with an expression ratio ≥ 1.5 (upregulated) or ≤ 0.67 (downregulated). After bioinformatics analysis, ten dysregulated proteins were selected as more prone to be associated with AD, and their dysregulation in the disease was verified by qPCR, WB, immunohistochemistry (IHC), immunofluorescence (IF), pull-down, and/or ELISA, using tissue and plasma samples of AD patients, patients with other dementias, and healthy individuals.

Conclusions

We identified and validated novel AD-associated proteins in brain tissue that should be of further interest for the study of the disease. Remarkably, PMP2 and SCRN3 were found to bind to amyloid-β (Aβ) fibers in vitro, and PMP2 to associate with Aβ plaques by IF, whereas HECTD1 and SLC12A5 were identified as new potential blood-based biomarkers of the disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Availability of data and materials

The mass spectrometry proteomics data have been deposited at the ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifier PXD030751.

Abbreviations

AD:

Alzheimer’s disease

ANLN:

Anillin

Aβ:

Amyloid-β

BIN1:

Myc box-dependent-interacting protein 1

CSF:

Cerebrospinal fluid

DLPFC:

Dorsolateral prefrontal cortex

EXOC2:

Exocyst complex component 2

FTD:

Frontotemporal dementia

GFP:

Green fluorescence protein

HECTD1:

E3 ubiquitin-protein ligase

hNSCs:

Multipotent neural stem cells

HPC:

High pathology controls

HSC:

Human stem cell

IF:

Immunofluorescence

IHC:

Immunohistochemistry

LC–MS/MS:

Liquid chromatography coupled with tandem mass spectrometry

LPC:

Low-pathology controls

MBs:

Streptavidin magnetic beads

MCI:

Mild cognitive impairment

NFT:

Neurofibrillary tangles

NRGN:

Neurogranin

PMP2:

Peripheral myelin protein 2

PPP1R14A:

Protein phosphatase 1 regulatory subunit 14A

qPCR:

Real-time quantitative PCR

ROC:

Receiver operating characteristic curve

SCRN3:

Secernin-3

SLC12A5:

Solute carrier family 12 member 5

TMT:

Tandem mass tags

TSC2:

Tuberous sclerosis 2 protein

VD:

Vascular dementia

WB:

Western blot

References

  1. Ballard C, Gauthier S, Corbett A, Brayne C, Aarsland D, Jones E (2011) Alzheimer’s disease. Lancet 377(9770):1019–1031

    PubMed  Google Scholar 

  2. Masters CL, Bateman R, Blennow K, Rowe CC, Sperling RA, Cummings JL (2015) Alzheimer’s disease. Nat Rev Dis Primers 1:15056

    PubMed  Google Scholar 

  3. (2020) 2020 Alzheimer's disease facts and figures. Alzheimers Dement 16(3):391–460

  4. Montero-Calle A, San Segundo-Acosta P, Garranzo-Asensio M, Rabano A, Barderas R (2020) The molecular misreading of APP and UBB induces a humoral immune response in Alzheimer’s disease patients with diagnostic ability. Mol Neurobiol 57(2):1009–1020

    CAS  PubMed  Google Scholar 

  5. San Segundo-Acosta P, Montero-Calle A, Fuentes M, Rabano A, Villalba M, Barderas R (2019) Identification of Alzheimer’s disease autoantibodies and their target biomarkers by phage microarrays. J Proteome Res 18(7):2940–2953

    CAS  PubMed  Google Scholar 

  6. Jack CR Jr, Knopman DS, Jagust WJ, Shaw LM, Aisen PS, Weiner MW, Petersen RC, Trojanowski JQ (2010) Hypothetical model of dynamic biomarkers of the Alzheimer’s pathological cascade. Lancet Neurol 9(1):119–128

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Thorsell A, Bjerke M, Gobom J, Brunhage E, Vanmechelen E, Andreasen N, Hansson O, Minthon L, Zetterberg H, Blennow K (2010) Neurogranin in cerebrospinal fluid as a marker of synaptic degeneration in Alzheimer’s disease. Brain Res 1362:13–22

    CAS  PubMed  Google Scholar 

  8. Lane CA, Hardy J, Schott JM (2018) Alzheimer’s disease. Eur J Neurol 25(1):59–70

    CAS  PubMed  Google Scholar 

  9. Murphy MP, LeVine H 3rd (2010) Alzheimer’s disease and the amyloid-beta peptide. J Alzheimers Dis 19(1):311–323

    PubMed  PubMed Central  Google Scholar 

  10. Hampel H, Hardy J, Blennow K, Chen C, Perry G, Kim SH, Villemagne VL, Aisen P, Vendruscolo M, Iwatsubo T et al (2021) The amyloid-beta pathway in Alzheimer’s disease. Mol Psychiatry. https://doi.org/10.1038/s41380-021-01249-0

    Article  PubMed  PubMed Central  Google Scholar 

  11. Ono M, Watanabe H, Kitada A, Matsumura K, Ihara M, Saji H (2016) Highly selective Tau-SPECT imaging probes for detection of neurofibrillary tangles in Alzheimer’s disease. Sci Rep 6:34197

    CAS  PubMed  PubMed Central  Google Scholar 

  12. DeTure MA, Dickson DW (2019) The neuropathological diagnosis of Alzheimer’s disease. Mol Neurodegener 14(1):32

    PubMed  PubMed Central  Google Scholar 

  13. Goedert M, Spillantini MG (2006) A century of Alzheimer’s disease. Science 314(5800):777–781

    CAS  PubMed  Google Scholar 

  14. Tonnies E, Trushina E (2017) Oxidative stress, synaptic dysfunction, and Alzheimer’s disease. J Alzheimers Dis 57(4):1105–1121

    PubMed  PubMed Central  Google Scholar 

  15. Sery O, Povova J, Misek I, Pesak L, Janout V (2013) Molecular mechanisms of neuropathological changes in Alzheimer’s disease: a review. Folia Neuropathol 51(1):1–9

    CAS  PubMed  Google Scholar 

  16. Domon B, Aebersold R (2006) Mass spectrometry and protein analysis. Science 312(5771):212–217

    CAS  PubMed  Google Scholar 

  17. Aebersold R, Mann M (2003) Mass spectrometry-based proteomics. Nature 422(6928):198–207

    CAS  PubMed  Google Scholar 

  18. Martinez-Aguilar J, Chik J, Nicholson J, Semaan C, McKay MJ, Molloy MP (2013) Quantitative mass spectrometry for colorectal cancer proteomics. Proteom Clin Appl 7(1–2):42–54

    CAS  Google Scholar 

  19. Babel I, Barderas R, Diaz-Uriarte R, Martinez-Torrecuadrada JL, Sanchez-Carbayo M, Casal JI (2009) Identification of tumor-associated autoantigens for the diagnosis of colorectal cancer in serum using high density protein microarrays. Mol Cell Proteom 8(10):2382–2395

    CAS  Google Scholar 

  20. Barderas R, Babel I, Casal JI (2010) Colorectal cancer proteomics, molecular characterization and biomarker discovery. Proteom Clin Appl 4(2):159–178

    CAS  Google Scholar 

  21. Barderas R, Mendes M, Torres S, Bartolome RA, Lopez-Lucendo M, Villar-Vazquez R, Pelaez-Garcia A, Fuente E, Bonilla F, Casal JI (2013) In-depth characterization of the secretome of colorectal cancer metastatic cells identifies key proteins in cell adhesion, migration, and invasion. Mol Cell Proteom 12(6):1602–1620

    CAS  Google Scholar 

  22. Garranzo-Asensio M, San Segundo-Acosta P, Poves C, Fernandez-Acenero MJ, Martinez-Useros J, Montero-Calle A, Solis-Fernandez G, Sanchez-Martinez M, Rodriguez N, Ceron MA et al (2020) Identification of tumor-associated antigens with diagnostic ability of colorectal cancer by in-depth immunomic and seroproteomic analysis. J Proteom 214:103635

    CAS  Google Scholar 

  23. Mendes M, Pelaez-Garcia A, Lopez-Lucendo M, Bartolome RA, Calvino E, Barderas R, Casal JI (2017) Mapping the spatial proteome of metastatic cells in colorectal cancer. Proteomics 17(19):1700094

    Google Scholar 

  24. Salat DH, Kaye JA, Janowsky JS (2001) Selective preservation and degeneration within the prefrontal cortex in aging and Alzheimer disease. Arch Neurol 58(9):1403–1408

    CAS  PubMed  Google Scholar 

  25. Franzmeier N, Hartmann J, Taylor ANW, Araque-Caballero MA, Simon-Vermot L, Kambeitz-Ilankovic L, Burger K, Catak C, Janowitz D, Muller C et al (2018) The left frontal cortex supports reserve in aging by enhancing functional network efficiency. Alzheimers Res Ther 10(1):28

    PubMed  PubMed Central  Google Scholar 

  26. Franzmeier N, Duering M, Weiner M, Dichgans M, Ewers M (2017) Alzheimer’s disease neuroimaging I: Left frontal cortex connectivity underlies cognitive reserve in prodromal Alzheimer disease. Neurology 88(11):1054–1061

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Braak H, Braak E (1991) Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol 82(4):239–259

    CAS  PubMed  Google Scholar 

  28. Thal DR, Rub U, Orantes M, Braak H (2002) Phases of A beta-deposition in the human brain and its relevance for the development of AD. Neurology 58(12):1791–1800

    PubMed  Google Scholar 

  29. Goedert M, Ghetti B, Spillantini MG (2012) Frontotemporal dementia: implications for understanding Alzheimer disease. Cold Spring Harb Perspect Med 2(2):a006254

    PubMed  PubMed Central  Google Scholar 

  30. Jobson DD, Hase Y, Clarkson AN, Kalaria RN (2021) The role of the medial prefrontal cortex in cognition, ageing and dementia. Brain Commun 3(3):fcab125

    PubMed  PubMed Central  Google Scholar 

  31. Iadecola C (2013) The pathobiology of vascular dementia. Neuron 80(4):844–866

    CAS  PubMed  Google Scholar 

  32. Vieira RT, Caixeta L, Machado S, Silva AC, Nardi AE, Arias-Carrion O, Carta MG (2013) Epidemiology of early-onset dementia: a review of the literature. Clin Pract Epidemiol Ment Health 9:88–95

    PubMed  PubMed Central  Google Scholar 

  33. Hogan DB, Jette N, Fiest KM, Roberts JI, Pearson D, Smith EE, Roach P, Kirk A, Pringsheim T, Maxwell CJ (2016) The prevalence and incidence of frontotemporal dementia: a systematic review. Can J Neurol Sci 43(Suppl 1):S96–S109

    PubMed  Google Scholar 

  34. Smith EE (2017) Clinical presentations and epidemiology of vascular dementia. Clin Sci 131(11):1059–1068

    Google Scholar 

  35. Wolters FJ, Ikram MA (2019) Epidemiology of vascular dementia. Arterioscler Thromb Vasc Biol 39(8):1542–1549

    CAS  PubMed  Google Scholar 

  36. Iturria-Medina Y, Sotero RC, Toussaint PJ, Mateos-Perez JM, Evans AC (2016) Alzheimer’s disease neuroimaging I: early role of vascular dysregulation on late-onset Alzheimer’s disease based on multifactorial data-driven analysis. Nat Commun 7:11934

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Noor A, Zafar S, Zerr I (2021) Neurodegenerative proteinopathies in the proteoform spectrum-tools and challenges. Int J Mol Sci 22(3):1085

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Martinez-Martin P, Avila J, Investigators ADRU (2010) Alzheimer Center Reina Sofia Foundation: fighting the disease and providing overall solutions. J Alzheimers Dis 21(2):337–348

    PubMed  Google Scholar 

  39. Hyman BT, Phelps CH, Beach TG, Bigio EH, Cairns NJ, Carrillo MC, Dickson DW, Duyckaerts C, Frosch MP, Masliah E et al (2012) National Institute on Aging-Alzheimer’s Association guidelines for the neuropathologic assessment of Alzheimer’s disease. Alzheimers Dement 8(1):1–13

    PubMed  PubMed Central  Google Scholar 

  40. Montine TJ, Phelps CH, Beach TG, Bigio EH, Cairns NJ, Dickson DW, Duyckaerts C, Frosch MP, Masliah E, Mirra SS et al (2012) National Institute on Aging-Alzheimer’s Association guidelines for the neuropathologic assessment of Alzheimer’s disease: a practical approach. Acta Neuropathol 123(1):1–11

    CAS  PubMed  Google Scholar 

  41. Mirra SS, Hart MN, Terry RD (1993) Making the diagnosis of Alzheimer’s disease. A primer for practicing pathologists. Arch Pathol Lab Med 117(2):132–144

    CAS  PubMed  Google Scholar 

  42. Zea-Sevilla MA, Fernandez-Blazquez MA, Calero M, Bermejo-Velasco P, Rabano A (2015) Combined Alzheimer’s disease and cerebrovascular staging explains advanced dementia cognition. Alzheimers Dement 11(11):1358–1366

    PubMed  Google Scholar 

  43. Liste I, Garcia-Garcia E, Bueno C, Martinez-Serrano A (2007) Bcl-XL modulates the differentiation of immortalized human neural stem cells. Cell Death Differ 14(11):1880–1892

    CAS  PubMed  Google Scholar 

  44. Liste I, Garcia-Garcia E, Martinez-Serrano A (2004) The generation of dopaminergic neurons by human neural stem cells is enhanced by Bcl-XL, both in vitro and in vivo. J Neurosci 24(48):10786–10795

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Coronel R, Lachgar M, Bernabeu-Zornoza A, Palmer C, Dominguez-Alvaro M, Revilla A, Ocana I, Fernandez A, Martinez-Serrano A, Cano E et al (2019) Neuronal and glial differentiation of human neural stem cells is regulated by amyloid precursor protein (APP) Levels. Mol Neurobiol 56(2):1248–1261

    CAS  PubMed  Google Scholar 

  46. Coronel R, Palmer C, Bernabeu-Zornoza A, Monteagudo M, Rosca A, Zambrano A, Liste I (2019) Physiological effects of amyloid precursor protein and its derivatives on neural stem cell biology and signaling pathways involved. Neural Regen Res 14(10):1661–1671

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Wisniewski JR, Gaugaz FZ (2015) Fast and sensitive total protein and peptide assays for proteomic analysis. Anal Chem 87(8):4110–4116

    CAS  PubMed  Google Scholar 

  48. Lopez-Janeiro A, Ruz-Caracuel I, Ramon-Patino JL, De Los RV, Villalba Esparza M, Berjon A, Yebenes L, Hernandez A, Masetto I, Kadioglu E et al (2021) Proteomic analysis of low-grade, early-stage endometrial carcinoma reveals new dysregulated pathways associated with cell death and cell signaling. Cancers 13(4):794

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Garranzo-Asensio M, Rodriguez-Cobos J, San Millan C, Poves C, Fernandez-Acenero MJ, Pastor-Morate D, Vinal D, Montero-Calle A, Solis-Fernandez G, Ceron MA et al (2022) In-depth proteomics characterization of Np73 effectors identifies key proteins with diagnostic potential implicated in lymphangiogenesis, vasculogenesis and metastasis in colorectal cancer. Mol Oncol 16(14):2672–2692

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Exploring data normalization and analysis in large TMT experimental designs [https://pwilmart.github.io/IRS_normalization/understanding_IRS.html]. Accessed 13 Oct 2019

  51. Tan H, Yang K, Li Y, Shaw TI, Wang Y, Blanco DB, Wang X, Cho JH, Wang H, Rankin S et al (2017) integrative proteomics and phosphoproteomics profiling reveals dynamic signaling networks and bioenergetics pathways underlying T cell activation. Immunity 46(3):488–503

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Liu Y, Borel C, Li L, Muller T, Williams EG, Germain PL, Buljan M, Sajic T, Boersema PJ, Shao W et al (2017) Systematic proteome and proteostasis profiling in human Trisomy 21 fibroblast cells. Nat Commun 8(1):1212

    PubMed  PubMed Central  Google Scholar 

  53. Diz AP, Carvajal-Rodriguez A, Skibinski DO (2011) Multiple hypothesis testing in proteomics: a strategy for experimental work. Mol Cell Proteom 10(3):M110.004374

    Google Scholar 

  54. Jimenez A, Lu D, Kalocsay M, Berberich MJ, Balbi P, Jambhekar A, Lahav G (2022) Time-series transcriptomics and proteomics reveal alternative modes to decode p53 oscillations. Mol Syst Biol 18(3):e10588

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Pelaez-Garcia A, Barderas R, Batlle R, Vinas-Castells R, Bartolome RA, Torres S, Mendes M, Lopez-Lucendo M, Mazzolini R, Bonilla F et al (2015) A proteomic analysis reveals that Snail regulates the expression of the nuclear orphan receptor Nuclear Receptor Subfamily 2 Group F Member 6 (Nr2f6) and interleukin 17 (IL-17) to inhibit adipocyte differentiation. Mol Cell Proteom 14(2):303–315

    CAS  Google Scholar 

  56. Szklarczyk D, Gable AL, Lyon D, Junge A, Wyder S, Huerta-Cepas J, Simonovic M, Doncheva NT, Morris JH, Bork P et al (2019) STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res 47(D1):D607–D613

    CAS  PubMed  Google Scholar 

  57. Huang DW, Sherman BT, Tan Q, Kir J, Liu D, Bryant D, Guo Y, Stephens R, Baseler MW, Lane HC et al (2007) DAVID Bioinformatics Resources: expanded annotation database and novel algorithms to better extract biology from large gene lists. Nucleic Acids Res 35:169–175

    Google Scholar 

  58. Dennis G Jr, Sherman BT, Hosack DA, Yang J, Gao W, Lane HC, Lempicki RA (2003) DAVID: database for annotation, visualization, and integrated discovery. Genome Biol 4(5):P3

    PubMed  Google Scholar 

  59. Perez-Llamas C, Lopez-Bigas N (2011) Gitools: analysis and visualisation of genomic data using interactive heat-maps. PLoS ONE 6(5):e19541

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Bai B, Wang X, Li Y, Chen PC, Yu K, Dey KK, Yarbro JM, Han X, Lutz BM, Rao S et al (2020) Deep multilayer brain proteomics identifies molecular networks in Alzheimer’s disease progression. Neuron 105(6):975-991 e977

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Garranzo-Asensio M, San Segundo-Acosta P, Martinez-Useros J, Montero-Calle A, Fernandez-Acenero MJ, Haggmark-Manberg A, Pelaez-Garcia A, Villalba M, Rabano A, Nilsson P et al (2018) Identification of prefrontal cortex protein alterations in Alzheimer’s disease. Oncotarget 9(13):10847–10867

    PubMed  PubMed Central  Google Scholar 

  62. Bardou P, Mariette J, Escudie F, Djemiel C, Klopp C (2014) jvenn: an interactive Venn diagram viewer. BMC Bioinform 15:293

    Google Scholar 

  63. Johnson ECB, Dammer EB, Duong DM, Ping L, Zhou M, Yin L, Higginbotham LA, Guajardo A, White B, Troncoso JC et al (2020) Large-scale proteomic analysis of Alzheimer’s disease brain and cerebrospinal fluid reveals early changes in energy metabolism associated with microglia and astrocyte activation. Nat Med 26(5):769–780

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Shukla V, Skuntz S, Pant HC (2012) Deregulated Cdk5 activity is involved in inducing Alzheimer’s disease. Arch Med Res 43(8):655–662

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Adav SS, Park JE, Sze SK (2019) Quantitative profiling brain proteomes revealed mitochondrial dysfunction in Alzheimer’s disease. Mol Brain 12(1):8

    PubMed  PubMed Central  Google Scholar 

  66. Jayapalan S, Subramanian D, Natarajan J (2016) Computational identification and analysis of neurodegenerative disease associated protein kinases in hominid genomes. Genes Dis 3(3):228–237

    PubMed  PubMed Central  Google Scholar 

  67. Bolognin S, Lorenzetto E, Diana G, Buffelli M (2014) The potential role of rho GTPases in Alzheimer’s disease pathogenesis. Mol Neurobiol 50(2):406–422

    CAS  PubMed  Google Scholar 

  68. Kapoor A, Nation DA (2021) Role of Notch signaling in neurovascular aging and Alzheimer’s disease. Semin Cell Dev Biol 116:90–97

    PubMed  Google Scholar 

  69. Woo HN, Park JS, Gwon AR, Arumugam TV, Jo DG (2009) Alzheimer’s disease and Notch signaling. Biochem Biophys Res Commun 390(4):1093–1097

    CAS  PubMed  Google Scholar 

  70. Buhl E, Kim YA, Parsons T, Zhu B, Santa-Maria I, Lefort R, Hodge JJL (2022) Effects of Eph/ephrin signalling and human Alzheimer’s disease-associated EphA1 on Drosophila behaviour and neurophysiology. Neurobiol Dis 170:105752

    CAS  PubMed  Google Scholar 

  71. Pires G, McElligott S, Drusinsky S, Halliday G, Potier MC, Wisniewski T, Drummond E (2019) Secernin-1 is a novel phosphorylated tau binding protein that accumulates in Alzheimer’s disease and not in other tauopathies. Acta Neuropathol Commun 7(1):195

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Montero-Calle A, Aranguren-Abeigon I, Garranzo-Asensio M, Poves C, Fernández-Aceñero MJ, Martínez-Useros J, Sanz R, Dziaková J, Rodriguez-Cobos J, Solís-Fernández G et al (2021) Multiplexed biosensing diagnostic platforms detecting autoantibodies to tumor-associated antigens from exosomes released by CRC cells and tissue samples showed high diagnostic ability for colorectal cancer. Engineering 7(10):1393. https://doi.org/10.1016/j.eng.2021.04.026

    Article  Google Scholar 

  73. Bai B, Vanderwall D, Li Y, Wang X, Poudel S, Wang H, Dey KK, Chen PC, Yang K, Peng J (2021) Proteomic landscape of Alzheimer’s Disease: novel insights into pathogenesis and biomarker discovery. Mol Neurodegener 16(1):55

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Li KW, Ganz AB, Smit AB (2019) Proteomics of neurodegenerative diseases: analysis of human post-mortem brain. J Neurochem 151(4):435–445

    CAS  PubMed  Google Scholar 

  75. Rudrabhatla P, Jaffe H, Pant HC (2011) Direct evidence of phosphorylated neuronal intermediate filament proteins in neurofibrillary tangles (NFTs): phosphoproteomics of Alzheimer’s NFTs. FASEB J 25(11):3896–3905

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Roher AE, Chaney MO, Kuo YM, Webster SD, Stine WB, Haverkamp LJ, Woods AS, Cotter RJ, Tuohy JM, Krafft GA et al (1996) Morphology and toxicity of Abeta-(1–42) dimer derived from neuritic and vascular amyloid deposits of Alzheimer’s disease. J Biol Chem 271(34):20631–20635

    CAS  PubMed  Google Scholar 

  77. Esparza TJ, Wildburger NC, Jiang H, Gangolli M, Cairns NJ, Bateman RJ, Brody DL (2016) Soluble amyloid-beta aggregates from human Alzheimer’s disease brains. Sci Rep 6:38187

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Shankar GM, Li S, Mehta TH, Garcia-Munoz A, Shepardson NE, Smith I, Brett FM, Farrell MA, Rowan MJ, Lemere CA et al (2008) Amyloid-beta protein dimers isolated directly from Alzheimer’s brains impair synaptic plasticity and memory. Nat Med 14(8):837–842

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Lutz BM, Peng J (2018) Deep Profiling of the Aggregated Proteome in Alzheimer’s Disease: From Pathology to Disease Mechanisms. Proteomes 6(4):46

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Fasman GD, Perczel A, Moore CD (1995) Solubilization of beta-amyloid-(1–42)-peptide: reversing the beta-sheet conformation induced by aluminum with silicates. Proc Natl Acad Sci U S A 92(2):369–371

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Rayaprolu S, Higginbotham L, Bagchi P, Watson CM, Zhang T, Levey AI, Rangaraju S, Seyfried NT (2021) Systems-based proteomics to resolve the biology of Alzheimer’s disease beyond amyloid and tau. Neuropsychopharmacology 46(1):98–115

    CAS  PubMed  Google Scholar 

  82. Higginbotham L, Ping L, Dammer EB, Duong DM, Zhou M, Gearing M, Hurst C, Glass JD, Factor SA, Johnson ECB et al (2020) Integrated proteomics reveals brain-based cerebrospinal fluid biomarkers in asymptomatic and symptomatic Alzheimer’s disease. Sci Adv. https://doi.org/10.1126/sciadv.aaz9360

    Article  PubMed  PubMed Central  Google Scholar 

  83. Sathe G, Na CH, Renuse S, Madugundu AK, Albert M, Moghekar A, Pandey A (2019) Quantitative proteomic profiling of cerebrospinal fluid to identify candidate biomarkers for Alzheimer’s disease. Proteom Clin Appl 13(4):e1800105

    Google Scholar 

  84. Wang Z, Yu K, Tan H, Wu Z, Cho JH, Han X, Sun H, Beach TG, Peng J (2020) 27-Plex tandem mass tag mass spectrometry for profiling brain proteome in Alzheimer’s disease. Anal Chem 92(10):7162–7170

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Kalaria RN, Ballard C (1999) Overlap between pathology of Alzheimer disease and vascular dementia. Alzheimer Dis Assoc Disord 13(Suppl 3):S115-123

    PubMed  Google Scholar 

  86. Attems J, Jellinger KA (2014) The overlap between vascular disease and Alzheimer’s disease–lessons from pathology. BMC Med 12:206

    PubMed  PubMed Central  Google Scholar 

  87. Zhou W, Wang Z, Shen N, Pi W, Jiang W, Huang J, Hu Y, Li X, Sun L (2015) Knockdown of ANLN by lentivirus inhibits cell growth and migration in human breast cancer. Mol Cell Biochem 398(1–2):11–19

    CAS  PubMed  Google Scholar 

  88. Wang G, Shen W, Cui L, Chen W, Hu X, Fu J (2016) Overexpression of Anillin (ANLN) is correlated with colorectal cancer progression and poor prognosis. Cancer Biomark 16(3):459–465

    CAS  PubMed  Google Scholar 

  89. Xu J, Zheng H, Yuan S, Zhou B, Zhao W, Pan Y, Qi D (2019) Overexpression of ANLN in lung adenocarcinoma is associated with metastasis. Thorac Cancer 10(8):1702–1709

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Karch CM, Goate AM (2015) Alzheimer’s disease risk genes and mechanisms of disease pathogenesis. Biol Psychiatry 77(1):43–51

    CAS  PubMed  Google Scholar 

  91. Tan MS, Yu JT, Tan L (2013) Bridging integrator 1 (BIN1): form, function, and Alzheimer’s disease. Trends Mol Med 19(10):594–603

    CAS  PubMed  Google Scholar 

  92. Shen R, Zhao X, He L, Ding Y, Xu W, Lin S, Fang S, Yang W, Sung K, Spencer B et al (2020) Upregulation of RIN3 induces endosomal dysfunction in Alzheimer’s disease. Transl Neurodegener 9(1):26

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Portelius E, Zetterberg H, Skillback T, Tornqvist U, Andreasson U, Trojanowski JQ, Weiner MW, Shaw LM, Mattsson N, Blennow K et al (2015) Cerebrospinal fluid neurogranin: relation to cognition and neurodegeneration in Alzheimer’s disease. Brain 138(Pt 11):3373–3385

    PubMed  PubMed Central  Google Scholar 

  94. Remnestal J, Just D, Mitsios N, Fredolini C, Mulder J, Schwenk JM, Uhlen M, Kultima K, Ingelsson M, Kilander L et al (2016) CSF profiling of the human brain enriched proteome reveals associations of neuromodulin and neurogranin to Alzheimer’s disease. Proteomics Clin Appl 10(12):1242–1253

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Pereira JB, Janelidze S, Ossenkoppele R, Kvartsberg H, Brinkmalm A, Mattsson-Carlgren N, Stomrud E, Smith R, Zetterberg H, Blennow K et al (2021) Untangling the association of amyloid-beta and tau with synaptic and axonal loss in Alzheimer’s disease. Brain 144(1):310–324

    PubMed  Google Scholar 

  96. Schmidt MF, Gan ZY, Komander D, Dewson G (2021) Ubiquitin signalling in neurodegeneration: mechanisms and therapeutic opportunities. Cell Death Differ 28(2):570–590

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Bennett L, Madders E, Parsons JL (2020) HECTD1 promotes base excision repair in nucleosomes through chromatin remodelling. Nucleic Acids Res 48(3):1301–1313

    CAS  PubMed  Google Scholar 

  98. Van Bergen NJ, Ahmed SM, Collins F, Cowley M, Vetro A, Dale RC, Hock DH, de Caestecker C, Menezes M, Massey S et al (2020) Mutations in the exocyst component EXOC2 cause severe defects in human brain development. J Exp Med. https://doi.org/10.1084/jem.20192040

    Article  PubMed  PubMed Central  Google Scholar 

  99. Arroyo JP, Kahle KT, Gamba G (2013) The SLC12 family of electroneutral cation-coupled chloride cotransporters. Mol Aspects Med 34(2–3):288–298

    CAS  PubMed  Google Scholar 

  100. Hu C, Tao L, Cao X, Chen L (2020) The solute carrier transporters and the brain: physiological and pharmacological implications. Asian J Pharm Sci 15(2):131–144

    PubMed  Google Scholar 

  101. Ayka A, Sehirli AO (2020) The role of the SLC transporters protein in the neurodegenerative disorders. Clin Psychopharmacol Neurosci 18(2):174–187

    PubMed  Google Scholar 

  102. Savas JN, Wang YZ, DeNardo LA, Martinez-Bartolome S, McClatchy DB, Hark TJ, Shanks NF, Cozzolino KA, Lavallee-Adam M, Smukowski SN et al (2017) Amyloid accumulation drives proteome-wide alterations in mouse models of Alzheimer’s disease-like pathology. Cell Rep 21(9):2614–2627

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Doshina A, Gourgue F, Onizuka M, Opsomer R, Wang P, Ando K, Tasiaux B, Dewachter I, Kienlen-Campard P, Brion JP et al (2017) Cortical cells reveal APP as a new player in the regulation of GABAergic neurotransmission. Sci Rep 7(1):370

    PubMed  PubMed Central  Google Scholar 

  104. Ferrando-Miguel R, Rosner M, Freilinger A, Lubec G, Hengstschlager M (2005) Tuberin–a new molecular target in Alzheimer’s disease? Neurochem Res 30(11):1413–1419

    CAS  PubMed  Google Scholar 

  105. Habib SL, Michel D, Masliah E, Thomas B, Ko HS, Dawson TM, Abboud H, Clark RA, Imam SZ (2008) Role of tuberin in neuronal degeneration. Neurochem Res 33(6):1113–1116

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Yuan E, Tsai PT, Greene-Colozzi E, Sahin M, Kwiatkowski DJ, Malinowska IA (2012) Graded loss of tuberin in an allelic series of brain models of TSC correlates with survival, and biochemical, histological and behavioral features. Hum Mol Genet 21(19):4286–4300

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Stettner M, Zenker J, Klingler F, Szepanowski F, Hartung HP, Mausberg AK, Kleinschnitz C, Chrast R, Kieseier BC (2018) The role of peripheral myelin protein 2 in remyelination. Cell Mol Neurobiol 38(2):487–496

    CAS  PubMed  Google Scholar 

  108. Takizawa N, Koga Y, Ikebe M (2002) Phosphorylation of CPI17 and myosin binding subunit of type 1 protein phosphatase by p21-activated kinase. Biochem Biophys Res Commun 297(4):773–778

    CAS  PubMed  Google Scholar 

  109. Drummond E, Kavanagh T, Pires G, Marta-Ariza M, Kanshin E, Nayak S, Faustin A, Berdah V, Ueberheide B, Wisniewski T (2022) The amyloid plaque proteome in early onset Alzheimer’s disease and down syndrome. Acta Neuropathol Commun 10(1):53

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Malek-Ahmadi M, Perez SE, Chen K, Mufson EJ (2016) Neuritic and diffuse plaque associations with memory in non-cognitively impaired elderly. J Alzheimers Dis 53(4):1641–1652

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Drummond E, Wisniewski T (2017) The use of localized proteomics to identify the drivers of Alzheimer’s disease pathogenesis. Neural Regen Res 12(6):912–913

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Drummond E, Nayak S, Faustin A, Pires G, Hickman RA, Askenazi M, Cohen M, Haldiman T, Kim C, Han X et al (2017) Proteomic differences in amyloid plaques in rapidly progressive and sporadic Alzheimer’s disease. Acta Neuropathol 133(6):933–954

    CAS  PubMed  PubMed Central  Google Scholar 

  113. San Segundo-Acosta P, Montero-Calle A, Jernbom-Falk A, Alonso-Navarro M, Pin E, Andersson E, Hellstrom C, Sanchez-Martinez M, Rabano A, Solis-Fernandez G et al (2021) Multiomics profiling of alzheimer’s disease serum for the identification of autoantibody biomarkers. J Proteom Res 20(11):5115–5130

    CAS  Google Scholar 

  114. Valverde A, Montero-Calle A, Arévalo B, San Segundo-Acosta P, Serafín V, Alonso-Navarro M, Solís-Fernández G, Pingarron J, Campuzano S, Barderas R (2021) Phage-derived and aberrant HaloTag peptides immobilized on magnetic microbeads for amperometric biosensing of serum autoantibodies and Alzheimer’s disease diagnosis. Anal Sens 1(4):161–165

    CAS  Google Scholar 

Download references

Acknowledgements

The protein identification by nLC–MS/MS was carried out in the Proteomics and Genomics Facility (CIB-CSIC), a member of ProteoRed-ISCIII network.

Funding

This work was supported by the financial support of the PI17CIII/00045 and PI20CIII/00019 grants from the AES-ISCIII program to R.B. The FPU predoctoral contract to A.M-C. is supported by the Spanish Ministerio de Educación, Cultura y Deporte. G.S-F. is recipient of a predoctoral contract (grant number 1193818N) supported by The Flanders Research Foundation (FWO). M. G-A. is recipient of a Margarita Salas postdoctoral grant for the requalification of the Spanish university system.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: AM-C and RB. Methodology: AM-C, G.S-F, RC, AR, VR, AP-G, IL, and RB. Investigation: AM-C, RC, MG-A, GS-F, VR, MJF-A, MM, JM-U, DM, MTM-C, and AP-G. Writing—original draft: AM-C and RB. Writing—review and editing: AM-C, GS-F, RC, MG-A, AR, VR, MJF-A, MM, JM-U, DM, MTM-C, AP-G; IL, and RB. Resources: AR, VR, MM, IL, and RB. Supervision: AM-C, MJF-A, AP-G, IL, and RB. Funding acquisition: IL, and RB. All authors read and approved the manuscript.

Corresponding author

Correspondence to Rodrigo Barderas.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethical approval and consent to participate

The Institutional Ethical Review Board of the Spanish Research Center for Neurological Diseases Foundation (CIEN) and the Instituto de Salud Carlos III approved this study on proteomics analysis and biomarker discovery of Alzheimer’s disease (CEI PI 49).

Consent for publication

All authors of this article give consent for publication of the manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

18_2023_4791_MOESM1_ESM.pptx

Supplementary Supplementary Fig. 1. MaxQuant data normalization. Left, box plots of the mean of log2 protein intensities before (top) and after (bottom) data normalization of each TMT reporter. Right, histogram of the log2 protein intensities for each TMT reporter before (top) and after (bottom) data normalization. After SL normalization, box plots and density distributions of each TMT reporter were aligned. file1 (PPTX 465 KB)

18_2023_4791_MOESM2_ESM.pptx

Supplementary Supplementary Fig. 2. Bioinformatics analysis of APP, MAPT, and dysregulated proteins in AD. A Graph bar representing the TMT relative protein abundance of APP, MAPT or amyloidβ peptide in the individual analyzed samples including duplicates of healthy individuals, VD, FTD patients, Braak IV, Braak V and Braak VI, as obtained from mass spectrometry analysis, confirmed higher protein levels of APP and MAPT in AD samples. B Venn Diagram analysis of the significantly downregulated (left) or upregulated (right) proteins as obtained by ANOVA and Post Hoc correction regarding AD vs healthy and DV/FTD, Braak V vs healthy and Braak VI vs healthy comparisons. C Genome-wide overview of reactome pathways. Significant pathways in which the 171 significantly dysregulated proteins are involved were represented in yellow (p value < 0.05). Light grey represents pathways with no significant representation. file2 (PPTX 1251 KB)

18_2023_4791_MOESM3_ESM.pptx

Supplementary Supplementary Fig. 3. Validation of mRNA and protein dysregulation of the 10 candidate proteins. A Differences at mRNA expression levels in healthy individuals, VD and FTD patients, Braak IV, Braak V and Braak VI AD groups were separately found for the 10 selected proteins, with HECTD1 significantly downregulated in AD patients and PPP1R14A, SCRN3, ANLN, BIN1 and NRGN statistically significant upregulated in patients. B Coomassie-blue staining (upper panel) and Ponceau red staining (lower panel) for quality control of individual protein extracts of the left prefrontal cortex brain tissue samples of AD patients and controls and for normalization of the total protein content per sample used for WB validation, respectively. C Statistically significant differences at protein level as observed by WB were separately found among healthy individuals and VD and FTD patients, and AD patients at Braak IV, Braak V and Braak VI for HECTD1, EXOC2, SLC12A5, TSC2, ANLN, NRGN and SCRN3. D Immunohistochemistry analysis revealed dysregulation of ANLN, BIN1, SCRN3, EXOC2 and HECTD1 protein levels at each Braak stage in comparison to healthy individuals. *: p value < 0.05; **: p value < 0.01. ***: p value < 0.001; ****: p value < 0.0001; n.s.: not significant; CT: controls; AD: AD patients file3 (PPTX 3532 KB)

18_2023_4791_MOESM4_ESM.pptx

Supplementary Supplementary Fig. 4. Analysis of the proteins specifically dysregulated at Braak V or Braak VI in comparison with Healthy and VD and FTD patients. A Venn diagram analysis of the significantly dysregulated proteins at Braak V (left) or Braak VI (right) stages obtained by ANOVA and Post Hoc correction and t-test comparison between AD and controls or healthy individuals. A total of 34 and 15 proteins were identified as dysregulated at Braak V or Braak VI, respectively. B Genome-wide overview of reactome pathways significantly altered at Braak V or Braak VI AD stages. Significant pathways were represented in yellow (p value < 0.05). Light grey represents pathways with no significant representation file4 (PPTX 1034 KB)

18_2023_4791_MOESM5_ESM.pdf

Supplementary Supplementary Fig. 5. Immunofluorescence staining of human Aβ plaques. A Negative control of immunofluorescence experiment. AD Braak V tissue was incubated with 4G8 and its corresponding secondary antibody (Alexa Fluor 555) and with Alexa Fluor 647 to confirm the specific staining of PMP2 and SCRN3 in AD tissue samples. B Immunofluorescence images of SCRN3 staining showing the nuclear staining with Hoechst for the confirmation of the presence of SCRN3 within the cells. C Lifetime images of SCRN3 and PMP2 staining showed the differential specific staining of both proteins in the tissue samples of AD patients and healthy individuals from the autofluorescence of tissue and lipofuscin-like structures. Shorter lifetime: positive Alexa Fluor 647 staining; Longer lifetime: lipofuscin-like structures; Scale bar: 20 µm. D λ spectra of Alexa-Fluor 647 from lipofuscin-like regions (AF) and specific 647 signals (PMP2 or SCRN3) regions as indicated in Fig. 6f,g. AF: autofluorescence. file5 (PDF 260 KB)

Supplementary file6 (PPTX 56725 KB)

Supplementary file7 (XLSX 12 KB)

Supplementary file8 (XLSX 12 KB)

Supplementary file9 (XLSX 11 KB)

Supplementary file10 (XLSX 12 KB)

Supplementary file11 (XLSX 713 KB)

Supplementary file12 (XLSX 1167 KB)

Supplementary file13 (XLSX 19 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Montero-Calle, A., Coronel, R., Garranzo-Asensio, M. et al. Proteomics analysis of prefrontal cortex of Alzheimer’s disease patients revealed dysregulated proteins in the disease and novel proteins associated with amyloid-β pathology. Cell. Mol. Life Sci. 80, 141 (2023). https://doi.org/10.1007/s00018-023-04791-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00018-023-04791-y

Keywords

Navigation