Skip to main content
Log in

A neuroprotective role of Ufmylation through Atg9 in the aging brain of Drosophila

  • Original Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Ufmylation is a recently identified small ubiquitin-like modification, whose biological function and relevant cellular targets are poorly understood. Here we present evidence of a neuroprotective role for Ufmylation involving Autophagy-related gene 9 (Atg9) during Drosophila aging. The Ufm1 system ensures the health of aged neurons via Atg9 by coordinating autophagy and mTORC1, and maintaining mitochondrial homeostasis and JNK (c-Jun N-terminal kinase) activity. Neuron-specific expression of Atg9 suppresses the age-associated movement defect and lethality caused by loss of Ufmylation. Furthermore, Atg9 is identified as a conserved target of Ufm1 conjugation mediated by Ddrgk1, a critical regulator of Ufmylation. Mammalian Ddrgk1 was shown to be indispensable for the stability of endogenous Atg9A protein in mouse embryonic fibroblast (MEF) cells. Taken together, our findings might have important implications for neurodegenerative diseases in mammals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Availability of data and materials

No new datasets were generated during the current study.

References

  1. Klionsky DJ et al (2016) Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy 12(1):1–222. https://doi.org/10.1080/15548627.2015.1100356

    Article  PubMed  PubMed Central  Google Scholar 

  2. Lahiri V, Hawkins WD, Klionsky DJ (2019) Watch what you (Self-) eat: autophagic mechanisms that modulate metabolism. Cell Metab 29(4):803–826. https://doi.org/10.1016/j.cmet.2019.03.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Li H, Yu Z, Zhang W (2020) Misfolded protein aggregation and altered cellular pathways in neurodegenerative diseases. STEMedicine 1(4):e63. https://doi.org/10.37175/stemedicine.v1i4.63

    Article  Google Scholar 

  4. Xi Y, Dhaliwal JS, Ceizar M, Vaculik M, Kumar KL, Lagace DC (2016) Knockout of Atg5 delays the maturation and reduces the survival of adult-generated neurons in the hippocampus. Cell Death Dis 7:e2127. https://doi.org/10.1038/cddis.2015.406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Nowosad A, Besson A (2022) Lysosomes at the crossroads of cell metabolism, cell cycle, and stemness. Int J Mol Sci 23(4):2290. https://doi.org/10.3390/ijms23042290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Jin M, Klionsky DJ (2014) Regulation of autophagy: modulation of the size and number of autophagosomes. FEBS Lett 588(15):2457–2463. https://doi.org/10.1016/j.febslet.2014.06.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Webber JL, Tooze SA (2010) New insights into the function of Atg9. FEBS Lett 584(7):1319–1326. https://doi.org/10.1016/j.febslet.2010.01.020

    Article  CAS  PubMed  Google Scholar 

  8. Mizushima N, Yoshimori T, Ohsumi Y (2011) The role of Atg proteins in autophagosome formation. Annu Rev Cell Dev Biol 27:107–132. https://doi.org/10.1146/annurev-cellbio-092910-154005

    Article  CAS  PubMed  Google Scholar 

  9. Yamamoto H, Kakuta S, Watanabe TM, Kitamura A, Sekito T, Kondo-Kakuta C, Ichikawa R, Kinjo M, Ohsumi Y (2012) Atg9 vesicles are an important membrane source during early steps of autophagosome formation. J Cell Biol 198(2):219–233. https://doi.org/10.1083/jcb.201202061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Mari M, Griffith J, Rieter E, Krishnappa L, Klionsky DJ, Reggiori F (2010) An Atg9-containing compartment that functions in the early steps of autophagosome biogenesis. J Cell Biol 190(6):1005–1022. https://doi.org/10.1083/jcb.200912089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Popovic D, Dikic I (2014) TBC1D5 and the AP2 complex regulate ATG9 trafficking and initiation of autophagy. EMBO Rep 15(4):392–401. https://doi.org/10.1002/embr.201337995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Tamura H, Shibata M, Koike M, Sasaki M, Uchiyama Y (2010) Atg9A protein, an autophagy-related membrane protein, is localized in the neurons of mouse brains. J Histochem Cytochem: Off J Histochem Soc 58(5):443–453. https://doi.org/10.1369/jhc.2010.955690

    Article  CAS  Google Scholar 

  13. Wen JK, Wang YT, Chan CC, Hsieh CW, Liao HM, Hung CC, Chen GC (2017) Atg9 antagonizes TOR signaling to regulate intestinal cell growth and epithelial homeostasis in Drosophila. eLife. https://doi.org/10.7554/eLife.29338

    Article  PubMed  PubMed Central  Google Scholar 

  14. Hietakangas V, Cohen SM (2009) Regulation of tissue growth through nutrient sensing. Annu Rev Genet 43:389–410. https://doi.org/10.1146/annurev-genet-102108-134815

    Article  CAS  PubMed  Google Scholar 

  15. Zhang W, Thompson BJ, Hietakangas V, Cohen SM (2011) MAPK/ERK signaling regulates insulin sensitivity to control glucose metabolism in Drosophila. PLoS Genet 7(12):e1002429. https://doi.org/10.1371/journal.pgen.1002429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Liu Y, Mattila J, Ventela S, Yadav L, Zhang W, Lamichane N, Sundstrom J, Kauko O, Grenman R, Varjosalo M, Westermarck J, Hietakangas V (2017) PWP1 mediates nutrient-dependent growth control through nucleolar regulation of ribosomal gene expression. Dev Cell 43(2):240–252.e245. https://doi.org/10.1016/j.devcel.2017.09.022

    Article  CAS  PubMed  Google Scholar 

  17. Ma T, Hoeffer CA, Capetillo-Zarate E, Yu F, Wong H, Lin MT, Tampellini D, Klann E, Blitzer RD, Gouras GK (2010) Dysregulation of the mTOR pathway mediates impairment of synaptic plasticity in a mouse model of Alzheimer’s disease. PloS One 5(9):e12845. https://doi.org/10.1371/journal.pone.0012845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Martina JA, Chen Y, Gucek M, Puertollano R (2012) MTORC1 functions as a transcriptional regulator of autophagy by preventing nuclear transport of TFEB. Autophagy 8(6):903–914. https://doi.org/10.4161/auto.19653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hosokawa N, Hara T, Kaizuka T, Kishi C, Takamura A, Miura Y, Iemura S, Natsume T, Takehana K, Yamada N, Guan JL, Oshiro N, Mizushima N (2009) Nutrient-dependent mTORC1 association with the ULK1-Atg13-FIP200 complex required for autophagy. Mol Biol Cell 20(7):1981–1991. https://doi.org/10.1091/mbc.E08-12-1248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wei Y, Xu X (2016) UFMylation: a unique & fashionable modification for life. Genom Proteom Bioinform 14(3):140–146. https://doi.org/10.1016/j.gpb.2016.04.001

    Article  Google Scholar 

  21. Gerakis Y, Quintero M, Li H, Hetz C (2019) The UFMylation system in proteostasis and beyond. Trends Cell Biol 29(12):974–986. https://doi.org/10.1016/j.tcb.2019.09.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Cai Y, Singh N, Li H (2016) Essential role of Ufm1 conjugation in the hematopoietic system. Exp Hematol 44(6):442–446. https://doi.org/10.1016/j.exphem.2016.03.007

    Article  CAS  PubMed  Google Scholar 

  23. Walczak CP, Leto DE, Zhang L, Riepe C, Muller RY, DaRosa PA, Ingolia NT, Elias JE, Kopito RR (2019) Ribosomal protein RPL26 is the principal target of UFMylation. Proc Natl Acad Sci USA. https://doi.org/10.1073/pnas.1816202116

    Article  PubMed  PubMed Central  Google Scholar 

  24. Yoo HM, Kang SH, Kim JY, Lee JE, Seong MW, Lee SW, Ka SH, Sou YS, Komatsu M, Tanaka K, Lee ST, Noh DY, Baek SH, Jeon YJ, Chung CH (2014) Modification of ASC1 by UFM1 is crucial for ERalpha transactivation and breast cancer development. Mol Cell 56(2):261–274. https://doi.org/10.1016/j.molcel.2014.08.007

    Article  CAS  PubMed  Google Scholar 

  25. Qin B, Yu J, Nowsheen S, Wang M, Tu X, Liu T, Li H, Wang L, Lou Z (2019) UFL1 promotes histone H4 Ufmylation and ATM activation. Nat Commun 10(1):1242. https://doi.org/10.1038/s41467-019-09175-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Duan R, Shi Y, Yu L, Zhang G, Li J, Lin Y, Guo J, Wang J, Shen L, Jiang H, Wang G, Tang B (2016) UBA5 mutations cause a new form of autosomal recessive cerebellar ataxia. PloS One 11(2):e0149039. https://doi.org/10.1371/journal.pone.0149039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Liu J, Guan D, Dong M, Yang J, Wei H, Liang Q, Song L, Xu L, Bai J, Liu C, Mao J, Zhang Q, Zhou J, Wu X, Wang M, Cong YS (2020) UFMylation maintains tumour suppressor p53 stability by antagonizing its ubiquitination. Nat Cell Biol 22(9):1056–1063. https://doi.org/10.1038/s41556-020-0559-z

    Article  CAS  PubMed  Google Scholar 

  28. Verma P, Augustine GJ, Ammar MR, Tashiro A, Cohen SM (2015) A neuroprotective role for microRNA miR-1000 mediated by limiting glutamate excitotoxicity. Nat Neurosci 18(3):379–385. https://doi.org/10.1038/nn.3935

    Article  CAS  PubMed  Google Scholar 

  29. Cai Y, Pi W, Sivaprakasam S, Zhu X, Zhang M, Chen J, Makala L, Lu C, Wu J, Teng Y, Pace B, Tuan D, Singh N, Li H (2015) UFBP1, a key component of the Ufm1 conjugation system, is essential for ufmylation-mediated regulation of erythroid development. PLoS Genet 11(11):e1005643. https://doi.org/10.1371/journal.pgen.1005643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Chen F, Xing C, Zhang W, Li J, Hu T, Li L, Li H, Cai Y (2019) Salubrinal, a novel inhibitor of eIF-2alpha dephosphorylation, promotes erythropoiesis at early stage targeted by Ufmylation pathway. J Cell Physiol 234(10):18560–18570. https://doi.org/10.1002/jcp.28493

    Article  CAS  PubMed  Google Scholar 

  31. Zhu Y, Lei Q, Li D, Zhang Y, Jiang X, Hu Z, Xu G (2018) Proteomic and biochemical analyses reveal a novel mechanism for promoting protein ubiquitination and degradation by UFBP1, a key component of ufmylation. J Proteome Res 17(4):1509–1520. https://doi.org/10.1021/acs.jproteome.7b00843

    Article  CAS  PubMed  Google Scholar 

  32. Rubinsztein DC, Shpilka T, Elazar Z (2012) Mechanisms of autophagosome biogenesis. Curr Biol: CB 22(1):R29-34. https://doi.org/10.1016/j.cub.2011.11.034

    Article  CAS  PubMed  Google Scholar 

  33. Ravikumar B, Sarkar S, Davies JE, Futter M, Garcia-Arencibia M, Green-Thompson ZW, Jimenez-Sanchez M, Korolchuk VI, Lichtenberg M, Luo S, Massey DC, Menzies FM, Moreau K, Narayanan U, Renna M, Siddiqi FH, Underwood BR, Winslow AR, Rubinsztein DC (2010) Regulation of mammalian autophagy in physiology and pathophysiology. Physiol Rev 90(4):1383–1435. https://doi.org/10.1152/physrev.00030.2009

    Article  CAS  PubMed  Google Scholar 

  34. Bartlett BJ, Isakson P, Lewerenz J, Sanchez H, Kotzebue RW, Cumming RC, Harris GL, Nezis IP, Schubert DR, Simonsen A, Finley KD (2011) p62, Ref(2)P and ubiquitinated proteins are conserved markers of neuronal aging, aggregate formation and progressive autophagic defects. Autophagy 7(6):572–583. https://doi.org/10.4161/auto.7.6.14943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Branon TC, Bosch JA, Sanchez AD, Udeshi ND, Svinkina T, Carr SA, Feldman JL, Perrimon N, Ting AY (2018) Efficient proximity labeling in living cells and organisms with TurboID. Nat Biotechnol 36(9):880–887. https://doi.org/10.1038/nbt.4201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. May DG, Scott KL, Campos AR, Roux KJ (2020) Comparative application of BioID and TurboID for protein-proximity biotinylation. Cells 9(5):1070. https://doi.org/10.3390/cells9051070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Cerami E, Gao J, Dogrusoz U, Gross BE, Sumer SO, Aksoy BA, Jacobsen A, Byrne CJ, Heuer ML, Larsson E, Antipin Y, Reva B, Goldberg AP, Sander C, Schultz N (2012) The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov 2(5):401–404. https://doi.org/10.1158/2159-8290.CD-12-0095

    Article  PubMed  Google Scholar 

  38. Gao J, Aksoy BA, Dogrusoz U, Dresdner G, Gross B, Sumer SO, Sun Y, Jacobsen A, Sinha R, Larsson E, Cerami E, Sander C, Schultz N (2013) Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal 6(269):p11. https://doi.org/10.1126/scisignal.2004088

    Article  CAS  Google Scholar 

  39. Cao Y, Li R, Shen M, Li C, Zou Y, Jiang Q, Liu S, Lu C, Li H, Liu H, Cai Y (2021) DDRGK1, a crucial player of Ufmylation system, is indispensable for autophagic degradation by regulating lysosomal function. Cell Death Dis 12(5):416. https://doi.org/10.1038/s41419-021-03694-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Schleich S, Teleman AA (2009) Akt phosphorylates both Tsc1 and Tsc2 in Drosophila, but neither phosphorylation is required for normal animal growth. PloS one 4(7):e6305. https://doi.org/10.1371/journal.pone.0006305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ziviani E, Tao RN, Whitworth AJ (2010) Drosophila parkin requires PINK1 for mitochondrial translocation and ubiquitinates mitofusin. Proc Natl Acad Sci USA 107(11):5018–5023. https://doi.org/10.1073/pnas.0913485107

    Article  PubMed  PubMed Central  Google Scholar 

  42. Cisneros J, Belton TB, Shum GC, Molakal CG, Wong YC (2022) Mitochondria-lysosome contact site dynamics and misregulation in neurodegenerative diseases. Trends Neurosci 45(4):312–322. https://doi.org/10.1016/j.tins.2022.01.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. El Fissi N, Rojo M, Aouane A, Karatas E, Poliacikova G, David C, Royet J, Rival T (2018) Mitofusin gain and loss of function drive pathogenesis in Drosophila models of CMT2A neuropathy. EMBO Rep. https://doi.org/10.15252/embr.201745241

    Article  PubMed  PubMed Central  Google Scholar 

  44. Aparicio R, Rana A, Walker DW (2019) Upregulation of the autophagy adaptor p62/SQSTM1 prolongs health and lifespan in middle-aged Drosophila. Cell Rep 28(4):1029-1040.e1025. https://doi.org/10.1016/j.celrep.2019.06.070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ramachandran A, Jaeschke H (2019) Acetaminophen hepatotoxicity. Semin Liver Dis 39(2):221–234. https://doi.org/10.1055/s-0039-1679919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Win S, Than TA, Kaplowitz N (2018) The regulation of JNK signaling pathways in cell death through the interplay with mitochondrial SAB and upstream post-translational effects. Int J Mol Sci 19(11):3657. https://doi.org/10.3390/ijms19113657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Biteau B, Karpac J, Hwangbo D, Jasper H (2011) Regulation of Drosophila lifespan by JNK signaling. Exp Gerontol 46(5):349–354. https://doi.org/10.1016/j.exger.2010.11.003

    Article  CAS  PubMed  Google Scholar 

  48. Martin-Blanco E, Gampel A, Ring J, Virdee K, Kirov N, Tolkovsky AM, Martinez-Arias A (1998) Puckered encodes a phosphatase that mediates a feedback loop regulating JNK activity during dorsal closure in Drosophila. Genes Dev 12(4):557–570. https://doi.org/10.1101/gad.12.4.557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Nalls MA et al (2014) Large-scale meta-analysis of genome-wide association data identifies six new risk loci for Parkinson’s disease. Nat Genet 46(9):989–993. https://doi.org/10.1038/ng.3043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kinghorn KJ, Gronke S, Castillo-Quan JI, Woodling NS, Li L, Sirka E, Gegg M, Mills K, Hardy J, Bjedov I, Partridge L (2016) A Drosophila model of neuronopathic gaucher disease demonstrates lysosomal-autophagic defects and altered mtor signalling and is functionally rescued by rapamycin. J Neurosci: Off J Soc Neurosci 36(46):11654–11670. https://doi.org/10.1523/JNEUROSCI.4527-15.2016

    Article  CAS  Google Scholar 

  51. Senturk M, Lin G, Zuo Z, Mao D, Watson E, Mikos AG, Bellen HJ (2019) Ubiquilins regulate autophagic flux through mTOR signalling and lysosomal acidification. Nat Cell Biol 21(3):384–396. https://doi.org/10.1038/s41556-019-0281-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kim M, Sandford E, Gatica D, Qiu Y, Liu X, Zheng Y, Schulman BA, Xu J, Semple I, Ro SH, Kim B, Mavioglu RN, Tolun A, Jipa A, Takats S, Karpati M, Li JZ, Yapici Z, Juhasz G, Lee JH, Klionsky DJ, Burmeister M (2016) Mutation in ATG5 reduces autophagy and leads to ataxia with developmental delay. eLife. https://doi.org/10.7554/eLife.12245

    Article  PubMed  PubMed Central  Google Scholar 

  53. Juhasz G, Erdi B, Sass M, Neufeld TP (2007) Atg7-dependent autophagy promotes neuronal health, stress tolerance, and longevity but is dispensable for metamorphosis in Drosophila. Genes Dev 21(23):3061–3066. https://doi.org/10.1101/gad.1600707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Kim M, Park HL, Park HW, Ro SH, Nam SG, Reed JM, Guan JL, Lee JH (2013) Drosophila Fip200 is an essential regulator of autophagy that attenuates both growth and aging. Autophagy 9(8):1201–1213. https://doi.org/10.4161/auto.24811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Cheng Y, Niu Z, Cai Y, Zhang W (2022) Emerging role of UFMylation in secretory cells involved in the endocrine system by maintaining ER proteostasis. Front Endocrinol 13:1085408. https://doi.org/10.3389/fendo.2022.1085408

    Article  Google Scholar 

  56. Wang Z, Gong Y, Peng B, Shi R, Fan D, Zhao H, Zhu M, Zhang H, Lou Z, Zhou J, Zhu WG, Cong YS, Xu X (2019) MRE11 UFMylation promotes ATM activation. Nucleic Acids Res 47(8):4124–4135. https://doi.org/10.1093/nar/gkz110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Xu P, Damschroder D, Zhang M, Ryall KA, Adler PN, Saucerman JJ, Wessells RJ, Yan Z (2019) Atg2, Atg9 and Atg18 in mitochondrial integrity, cardiac function and healthspan in Drosophila. J Mol Cell Cardiol 127:116–124. https://doi.org/10.1016/j.yjmcc.2018.12.006

    Article  CAS  PubMed  Google Scholar 

  58. Stern M, McNew JA (2021) A transition to degeneration triggered by oxidative stress in degenerative disorders. Mol Psychiatry 26(3):736–746. https://doi.org/10.1038/s41380-020-00943-9

    Article  CAS  PubMed  Google Scholar 

  59. Tang HW, Liao HM, Peng WH, Lin HR, Chen CH, Chen GC (2013) Atg9 interacts with dTRAF2/TRAF6 to regulate oxidative stress-induced JNK activation and autophagy induction. Dev Cell 27(5):489–503. https://doi.org/10.1016/j.devcel.2013.10.017

    Article  CAS  PubMed  Google Scholar 

  60. Mailler E, Guardia CM, Bai X, Jarnik M, Williamson CD, Li Y, Maio N, Golden A, Bonifacino JS (2021) The autophagy protein ATG9A enables lipid mobilization from lipid droplets. Nat Commun 12(1):6750. https://doi.org/10.1038/s41467-021-26999-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Matoba K, Kotani T, Tsutsumi A, Tsuji T, Mori T, Noshiro D, Sugita Y, Nomura N, Iwata S, Ohsumi Y, Fujimoto T, Nakatogawa H, Kikkawa M, Noda NN (2020) Atg9 is a lipid scramblase that mediates autophagosomal membrane expansion. Nat Struct Mol Biol 27(12):1185–1193. https://doi.org/10.1038/s41594-020-00518-w

    Article  CAS  PubMed  Google Scholar 

  62. Maeda S, Yamamoto H, Kinch LN, Garza CM, Takahashi S, Otomo C, Grishin NV, Forli S, Mizushima N, Otomo T (2020) Structure, lipid scrambling activity and role in autophagosome formation of ATG9A. Nat Struct Mol Biol 27(12):1194–1201. https://doi.org/10.1038/s41594-020-00520-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Campisi D, Desrues L, Dembele KP, Mutel A, Parment R, Gandolfo P, Castel H, Morin F (2022) The core autophagy protein ATG9A controls dynamics of cell protrusions and directed migration. J Cell Biol. https://doi.org/10.1083/jcb.202106014

    Article  PubMed  PubMed Central  Google Scholar 

  64. Kiss V, Jipa A, Varga K, Takats S, Maruzs T, Lorincz P, Simon-Vecsei Z, Szikora S, Foldi I, Bajusz C, Toth D, Vilmos P, Gaspar I, Ronchi P, Mihaly J, Juhasz G (2020) Drosophila Atg9 regulates the actin cytoskeleton via interactions with profilin and Ena. Cell Death Differ 27(5):1677–1692. https://doi.org/10.1038/s41418-019-0452-0

    Article  CAS  PubMed  Google Scholar 

  65. Soukup SF, Kuenen S, Vanhauwaert R, Manetsberger J, Hernandez-Diaz S, Swerts J, Schoovaerts N, Vilain S, Gounko NV, Vints K, Geens A, De Strooper B, Verstreken P (2016) A LRRK2-dependent EndophilinA phosphoswitch is critical for macroautophagy at presynaptic terminals. Neuron 92(4):829–844. https://doi.org/10.1016/j.neuron.2016.09.037

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr. Tong Chao (Zhejiang University) for kindly providing UAS-GFP-Atg9 flies. We also thank Dr. Chen Guang-Chao (National Taiwan University) and Dr. Chen Yawen for providing pUAST-Flag-Atg9 plasmid. We thank Dr. Cai Yu (Temasek Life Sciences laboratory, Singapore) for pActin-Gal4 plasmid.

Funding

This work was supported by the National Natural Science Foundation of China (No. 31701229, 32270516 and 31970413), Senior Health Research Project of Jiangsu Provincial Health Commission (LKM2023010) and National Key R&D Program of China (2018YFC1200201).

Author information

Authors and Affiliations

Authors

Contributions

WZ designed the experiments. HL, ZY, ZN, YC, ZW, LH and JZ performed the experiments. HL, ZY, ZN, YC, YC, FM and ZW analyzed the data. WZ, ZY and YC wrote the manuscript.

Corresponding author

Correspondence to Wei Zhang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethical approval and consent to participate

Not applicable.

Consent for publication

All authors read and approved the final manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1681 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Yu, Z., Niu, Z. et al. A neuroprotective role of Ufmylation through Atg9 in the aging brain of Drosophila. Cell. Mol. Life Sci. 80, 129 (2023). https://doi.org/10.1007/s00018-023-04778-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00018-023-04778-9

Keywords

Navigation