Skip to main content
Log in

ORP9 and ORP10 form a heterocomplex to transfer phosphatidylinositol 4-phosphate at ER-TGN contact sites

  • Original Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Oxysterol-binding protein (OSBP) and its related proteins (ORPs) are a family of lipid transfer proteins (LTPs) that mediate non-vesicular lipid transport. ORP9 and ORP10, members of the OSBP/ORPs family, are located at the endoplasmic reticulum (ER)-trans-Golgi network (TGN) membrane contact sites (MCSs). It remained unclear how they mediate lipid transport. In this work, we discovered that ORP9 and ORP10 form a binary complex through intermolecular coiled-coil (CC) domain-CC domain interaction. The PH domains of ORP9 and ORP10 specially interact with phosphatidylinositol 4-phosphate (PI4P), mediating the TGN targeting. The ORP9-ORP10 complex plays a critical role in regulating PI4P levels at the TGN. Using in vitro reconstitution assays, we observed that while full-length ORP9 efficiently transferred PI4P between two apposed membranes, the lipid transfer kinetics was further accelerated by ORP10. Interestingly, our data showed that the PH domains of ORP9 and ORP10 participate in membrane tethering simultaneously, whereas ORDs of both ORP9 and ORP10 are required for lipid transport. Furthermore, our data showed that the depletion of ORP9 and ORP10 led to increased vesicle transport to the plasma membrane (PM). These findings demonstrate that ORP9 and ORP10 form a binary complex through the CC domains, maintaining PI4P homeostasis at ER-TGN MCSs and regulating vesicle trafficking.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Availability of data and material

All data and materials are available in the manuscript, the supplementary information, or from the corresponding authors upon reasonable request.

References

  1. Masone MC, Morra V, Venditti R (2019) Illuminating the membrane contact sites between the endoplasmic reticulum and the trans-Golgi network. FEBS Lett 593:3135–3148. https://doi.org/10.1002/1873-3468.13639

    Article  CAS  PubMed  Google Scholar 

  2. Prinz WA, Toulmay A, Balla T (2020) The functional universe of membrane contact sites. Nat Rev Mol Cell Biol 21:7–24. https://doi.org/10.1038/s41580-019-0180-9

    Article  CAS  PubMed  Google Scholar 

  3. Siehler J, Blochinger AK, Meier M, Lickert H (2021) Engineering islets from stem cells for advanced therapies of diabetes. Nat Rev Drug Discov 20:920–940. https://doi.org/10.1038/s41573-021-00262-w

    Article  CAS  PubMed  Google Scholar 

  4. Vance JE (2015) Phospholipid synthesis and transport in mammalian cells. Traffic 16:1–18. https://doi.org/10.1111/tra.12230

    Article  CAS  PubMed  Google Scholar 

  5. Stefan CJ, Trimble WS, Grinstein S, Drin G, Reinisch K, De Camilli P, Cohen S, Valm AM, Lippincott-Schwartz J, Levine TP et al (2017) Membrane dynamics and organelle biogenesis-lipid pipelines and vesicular carriers. BMC Biol 15:102. https://doi.org/10.1186/s12915-017-0432-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lev S (2012) Nonvesicular lipid transfer from the endoplasmic reticulum. Cold Spring Harb Perspect Biol 4:a013300. https://doi.org/10.1101/cshperspect.a013300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Reinisch KM, Prinz WA (2021) Mechanisms of nonvesicular lipid transport. J Cell Biol 220:e202012058. https://doi.org/10.1083/jcb.202012058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wong LH, Gatta AT, Levine TP (2019) Lipid transfer proteins: the lipid commute via shuttles, bridges and tubes. Nat Rev Mol Cell Biol 20:85–101. https://doi.org/10.1038/s41580-018-0071-5

    Article  CAS  PubMed  Google Scholar 

  9. Lipp NF, Ikhlef S, Milanini J, Drin G (2020) Lipid exchangers: cellular functions and mechanistic links with phosphoinositide metabolism. Front Cell Dev Biol 8:663. https://doi.org/10.3389/fcell.2020.00663

    Article  PubMed  PubMed Central  Google Scholar 

  10. Chiapparino A, Maeda K, Turei D, Saez-Rodriguez J, Gavin AC (2016) The orchestra of lipid-transfer proteins at the crossroads between metabolism and signaling. Prog Lipid Res 61:30–39. https://doi.org/10.1016/j.plipres.2015.10.004

    Article  CAS  PubMed  Google Scholar 

  11. Kentala H, Weber-Boyvat M, Olkkonen VM (2016) OSBP-related protein family: mediators of lipid transport and signaling at membrane contact sites. Int Rev Cell Mol Biol 321:299–340. https://doi.org/10.1016/bs.ircmb.2015.09.006

    Article  CAS  PubMed  Google Scholar 

  12. Raychaudhuri S, Prinz WA (2010) The diverse functions of oxysterol-binding proteins. Annu Rev Cell Dev Biol 26:157–177. https://doi.org/10.1146/annurev.cellbio.042308.113334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Olkkonen VM (2013) OSBP-related proteins: liganding by glycerophospholipids opens new insight into their function. Molecules 18:13666–13679. https://doi.org/10.3390/molecules181113666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Weber-Boyvat M, Kentala H, Peranen J, Olkkonen VM (2015) Ligand-dependent localization and function of ORP-VAP complexes at membrane contact sites. Cell Mol Life Sci 72:1967–1987. https://doi.org/10.1007/s00018-014-1786-x

    Article  CAS  PubMed  Google Scholar 

  15. Kaiser SE, Brickner JH, Reilein AR, Fenn TD, Walter P, Brunger AT (2005) Structural basis of FFAT motif-mediated ER targeting. Structure 13:1035–1045. https://doi.org/10.1016/j.str.2005.04.010

    Article  CAS  PubMed  Google Scholar 

  16. Murphy SE, Levine TP (2016) VAP, a versatile access point for the endoplasmic reticulum: review and analysis of FFAT-like motifs in the VAPome. Biochim Biophys Acta 1861:952–961. https://doi.org/10.1016/j.bbalip.2016.02.009

    Article  CAS  PubMed  Google Scholar 

  17. Lemmon MA (2007) Pleckstrin homology (PH) domains and phosphoinositides. Biochem Soc Symp 1:81–93. https://doi.org/10.1042/BSS0740081

    Article  Google Scholar 

  18. Galmes R, Houcine A, Vliet AR, Agostinis P, Jackson CL, Giordano F (2016) ORP5/ORP8 localize to endoplasmic reticulum–mitochondria contacts and are involved in mitochondrial function. EMBO Rep 17:800–810. https://doi.org/10.15252/embr.201541108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ghai R, Du X, Wang H, Dong J, Ferguson C, Brown AJ, Parton RG, Wu JW, Yang H (2017) ORP5 and ORP8 bind phosphatidylinositol-4, 5-biphosphate (PtdIns(4,5)P 2) and regulate its level at the plasma membrane. Nat Commun 8:757. https://doi.org/10.1038/s41467-017-00861-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Mesmin B, Bigay J, Moser von Filseck J, Lacas-Gervais S, Drin G, Antonny B (2013) A four-step cycle driven by PI(4)P hydrolysis directs sterol/PI(4)P exchange by the ER-Golgi tether OSBP. Cell 155:830–843. https://doi.org/10.1016/j.cell.2013.09.056

    Article  CAS  PubMed  Google Scholar 

  21. Levine TP, Munro S (2002) Targeting of Golgi-specific pleckstrin homology domains involves both PtdIns 4-kinase-dependent and -independent components. Curr Biol CB 12:695–704. https://doi.org/10.1016/s0960-9822(02)00779-0

    Article  CAS  PubMed  Google Scholar 

  22. Peretti D, Dahan N, Shimoni E, Hirschberg K, Lev S (2008) Coordinated lipid transfer between the endoplasmic reticulum and the Golgi complex requires the VAP proteins and is essential for Golgi-mediated transport. Mol Biol Cell 19:3871–3884. https://doi.org/10.1091/mbc.e08-05-0498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. de la Mora E, Dezi M, Di Cicco A, Bigay J, Gautier R, Manzi J, Polidori J, Castano-Diez D, Mesmin B, Antonny B et al (2021) Nanoscale architecture of a VAP-A-OSBP tethering complex at membrane contact sites. Nat Commun 12:3459. https://doi.org/10.1038/s41467-021-23799-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Jamecna D, Polidori J, Mesmin B, Dezi M, Levy D, Bigay J, Antonny B (2019) An intrinsically disordered region in OSBP acts as an entropic barrier to control protein dynamics and orientation at membrane contact sites. Dev Cell 49:220–234. https://doi.org/10.1016/j.devcel.2019.02.021

    Article  CAS  PubMed  Google Scholar 

  25. Lim CY, Davis OB, Shin HR, Zhang J, Berdan CA, Jiang X, Counihan JL, Ory DS, Nomura DK, Zoncu R (2019) ER-lysosome contacts enable cholesterol sensing by mTORC1 and drive aberrant growth signalling in Niemann-Pick type C. Nat Cell Biol 21:1206–1218. https://doi.org/10.1038/s41556-019-0391-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Tan JX, Finkel T (2022) A phosphoinositide signalling pathway mediates rapid lysosomal repair. Nature 609:815–821. https://doi.org/10.1038/s41586-022-05164-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Balla T (2013) Phosphoinositides: tiny lipids with giant impact on cell regulation. Physiol Rev 93:1019–1137. https://doi.org/10.1152/physrev.00028.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hammond GRV, Burke JE (2020) Novel roles of phosphoinositides in signaling, lipid transport, and disease. Curr Opin Cell Biol 63:57–67. https://doi.org/10.1016/j.ceb.2019.12.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Santiago-Tirado FH, Bretscher A (2011) Membrane-trafficking sorting hubs: cooperation between PI4P and small GTPases at the trans-Golgi network. Trends Cell Biol 21:515–525. https://doi.org/10.1016/j.tcb.2011.05.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. De Matteis MA, Wilson C, D’Angelo G (2013) Phosphatidylinositol-4-phosphate: the Golgi and beyond. BioEssays 35:612–622. https://doi.org/10.1002/bies.201200180

    Article  CAS  PubMed  Google Scholar 

  31. Tan J, Brill JA (2014) Cinderella story: PI4P goes from precursor to key signaling molecule. Crit Rev Biochem Mol Biol 49:33–58. https://doi.org/10.3109/10409238.2013.853024

    Article  CAS  PubMed  Google Scholar 

  32. Waugh MG (2019) The Great Escape: how phosphatidylinositol 4-kinases and PI4P promote vesicle exit from the Golgi (and drive cancer). Biochem J 476:2321–2346. https://doi.org/10.1042/BCJ20180622

    Article  CAS  PubMed  Google Scholar 

  33. Venditti R, Masone MC, Rega LR, Di Tullio G, Santoro M, Polishchuk E, Serrano IC, Olkkonen VM, Harada A, Medina DL et al (2019) The activity of Sac1 across ER-TGN contact sites requires the four-phosphate-adaptor-protein-1. J Cell Biol 218:783–797. https://doi.org/10.1083/jcb.201812021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Mesmin B, Bigay J, Polidori J, Jamecna D, Lacas-Gervais S, Antonny B (2017) Sterol transfer, PI4P consumption, and control of membrane lipid order by endogenous OSBP. EMBO J 36:3156–3174. https://doi.org/10.15252/embj.201796687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ngo M, Ridgway ND (2009) Oxysterol binding protein-related Protein 9 (ORP9) is a cholesterol transfer protein that regulates Golgi structure and function. Mol Biol Cell 20:1388–1399. https://doi.org/10.1091/mbc.E08-09-0905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Liu X, Ridgway ND (2014) Characterization of the sterol and phosphatidylinositol 4-phosphate binding properties of Golgi-associated OSBP-related protein 9 (ORP9). PLoS ONE 9:e108368. https://doi.org/10.1371/journal.pone.0108368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Maeda K, Anand K, Chiapparino A, Kumar A, Poletto M, Kaksonen M, Gavin AC (2013) Interactome map uncovers phosphatidylserine transport by oxysterol-binding proteins. Nature 501:257–261. https://doi.org/10.1038/nature12430

    Article  CAS  PubMed  Google Scholar 

  38. Venditti R, Rega LR, Masone MC, Santoro M, Polishchuk E, Sarnataro D, Paladino S, D’Auria S, Varriale A, Olkkonen VM et al (2019) Molecular determinants of ER-Golgi contacts identified through a new FRET-FLIM system. J Cell Biol 218:1055–1065. https://doi.org/10.1083/jcb.201812020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Nakatsu F, Kawasaki A (2021) Functions of oxysterol-binding proteins at membrane contact sites and their control by phosphoinositide metabolism. Front Cell Dev Biol 9:664788. https://doi.org/10.3389/fcell.2021.664788

    Article  PubMed  PubMed Central  Google Scholar 

  40. Kawasaki A, Sakai A, Nakanishi H, Hasegawa J, Taguchi T, Sasaki J, Arai H, Sasaki T, Igarashi M, Nakatsu F (2022) PI4P/PS countertransport by ORP10 at ER-endosome membrane contact sites regulates endosome fission. J Cell Biol 221:e202103141. https://doi.org/10.1083/jcb.202103141

    Article  CAS  PubMed  Google Scholar 

  41. Saraste M, Hyvönen M (1995) Pleckstrin homology domains: a fact file. Curr Opin Struct Biol 5:403–408. https://doi.org/10.1016/0959-440x(95)80104-9

    Article  CAS  PubMed  Google Scholar 

  42. Singh N, Reyes-Ordonez A, Compagnone MA, Moreno JF, Leslie BJ, Ha T, Chen J (2021) Redefining the specificity of phosphoinositide-binding by human PH domain-containing proteins. Nat Commun 12:4339. https://doi.org/10.1038/s41467-021-24639-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, Tunyasuvunakool K, Bates R, Zidek A, Potapenko A et al (2021) Highly accurate protein structure prediction with AlphaFold. Nature 596:583–589. https://doi.org/10.1038/s41586-021-03819-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Varadi M, Anyango S, Deshpande M, Nair S, Natassia C, Yordanova G, Yuan D, Stroe O, Wood G, Laydon A et al (2022) AlphaFold Protein Structure Database: massively expanding the structural coverage of protein-sequence space with high-accuracy models. Nucleic Acids Res 50:D439–D444. https://doi.org/10.1093/nar/gkab1061

    Article  CAS  PubMed  Google Scholar 

  45. Jones DT (1999) Protein secondary structure prediction based on position-specific scoring matrices. J Mol Biol 292:195–202. https://doi.org/10.1006/jmbi.1999.3091

    Article  CAS  PubMed  Google Scholar 

  46. Buchan DWA, Jones DT (2019) The PSIPRED Protein Analysis Workbench: 20 years on. Nucleic Acids Res 47:W402–W407. https://doi.org/10.1093/nar/gkz297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Nissila E, Ohsaki Y, Weber-Boyvat M, Perttila J, Ikonen E, Olkkonen VM (2012) ORP10, a cholesterol binding protein associated with microtubules, regulates apolipoprotein B-100 secretion. Biochim Biophys Acta 1821:1472–1484. https://doi.org/10.1016/j.bbalip.2012.08.004

    Article  CAS  PubMed  Google Scholar 

  48. Luo X, Wasilko DJ, Liu Y, Sun J, Wu X, Luo ZQ, Mao Y (2015) Structure of the legionella virulence factor, SidC reveals a unique PI(4)P-specific binding domain essential for its targeting to the bacterial phagosome. PLoS Pathog 11:e1004965. https://doi.org/10.1371/journal.ppat.1004965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Boura E, Nencka R (2015) Phosphatidylinositol 4-kinases: function, structure, and inhibition. Exp Cell Res 337:136–145. https://doi.org/10.1016/j.yexcr.2015.03.028

    Article  CAS  PubMed  Google Scholar 

  50. van der Schaar HM, Leyssen P, Thibaut HJ, de Palma A, van der Linden L, Lanke KH, Lacroix C, Verbeken E, Conrath K, Macleod AM et al (2013) A novel, broad-spectrum inhibitor of enterovirus replication that targets host cell factor phosphatidylinositol 4-kinase IIIbeta. Antimicrob Agents Chemother 57:4971–4981. https://doi.org/10.1128/AAC.01175-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Li Y, Mikrani R, Hu Y, Faran Ashraf Baig MM, Abbas M, Akhtar F, Xu M (2021) Research progress of phosphatidylinositol 4-kinase and its inhibitors in inflammatory diseases. Eur J Pharmacol 907:174300. https://doi.org/10.1016/j.ejphar.2021.174300

    Article  CAS  PubMed  Google Scholar 

  52. Chung J, Torta F, Masai K, Lucast L, Czapla H, Tanner LB, Narayanaswamy P, Wenk MR, Nakatsu F, De Camilli P (2015) PI4P/phosphatidylserine countertransport at ORP5- and ORP8-mediated ER-plasma membrane contacts. Science 349:428–432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Tan X, Banerjee P, Pham EA, Rutaganira FUN, Basu K, Bota-Rabassedas N, Guo HF, Grzeskowiak CL, Liu X, Yu J et al (2020) PI4KIIIβ is a therapeutic target in chromosome 1q-amplified lung adenocarcinoma. Sci Transl Med. https://doi.org/10.1126/scitranslmed.aax3772

    Article  PubMed  PubMed Central  Google Scholar 

  54. Balla A, Balla T (2006) Phosphatidylinositol 4-kinases: old enzymes with emerging functions. Trends Cell Biol 16:351–361. https://doi.org/10.1016/j.tcb.2006.05.003

    Article  CAS  PubMed  Google Scholar 

  55. Del Bel LM, Brill JA (2018) Sac1, a lipid phosphatase at the interface of vesicular and nonvesicular transport. Traffic 19:301–318. https://doi.org/10.1111/tra.12554

    Article  CAS  PubMed  Google Scholar 

  56. Burke JE (2018) Structural basis for regulation of phosphoinositide kinases and their involvement in human disease. Mol Cell 71:653–673. https://doi.org/10.1016/j.molcel.2018.08.005

    Article  CAS  PubMed  Google Scholar 

  57. Dornan GL, McPhail JA, Burke JE (2016) Type III phosphatidylinositol 4 kinases: structure, function, regulation, signalling and involvement in disease. Biochem Soc Trans 44:260–266. https://doi.org/10.1042/BST20150219

    Article  CAS  PubMed  Google Scholar 

  58. Zhou Y, Li S, Mayranpaa MI, Zhong W, Back N, Yan D, Olkkonen VM (2010) OSBP-related protein 11 (ORP11) dimerizes with ORP9 and localizes at the Golgi-late endosome interface. Exp Cell Res 316:3304–3316. https://doi.org/10.1016/j.yexcr.2010.06.008

    Article  CAS  PubMed  Google Scholar 

  59. Monteiro-Cardoso VF, Rochin L, Arora A, Houcine A, Jaaskelainen E, Kivela AM, Sauvanet C, Le Bars R, Marien E, Dehairs J et al (2022) ORP5/8 and MIB/MICOS link ER-mitochondria and intra-mitochondrial contacts for non-vesicular transport of phosphatidylserine. Cell Rep 40:111364. https://doi.org/10.1016/j.celrep.2022.111364

    Article  CAS  PubMed  Google Scholar 

  60. Guyard V, Monteiro-Cardoso VF, Omrane M, Sauvanet C, Houcine A, Boulogne C, Ben Mbarek K, Vitale N, Faklaris O, El Khallouki N et al (2022) ORP5 and ORP8 orchestrate lipid droplet biogenesis and maintenance at ER-mitochondria contact sites. J Cell Biol. https://doi.org/10.1083/jcb.202112107

    Article  PubMed  PubMed Central  Google Scholar 

  61. Wang S, Crisman L, Miller J, Datta I, Gulbranson DR, Tian Y, Yin Q, Yu H, Shen J (2019) Inducible Exoc7/Exo70 knockout reveals a critical role of the exocyst in insulin-regulated GLUT4 exocytosis. J Biol Chem 294:19988–19996. https://doi.org/10.1074/jbc.RA119.010821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Gulbranson DR, Crisman L, Lee M, Ouyang Y, Menasche BL, Demmitt BA, Wan C, Nomura T, Ye Y, Yu H et al (2019) AAGAB controls AP2 adaptor assembly in clathrin-mediated endocytosis. Dev Cell 50:436–446. https://doi.org/10.1016/j.devcel.2019.06.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Gulbranson DR, Davis EM, Demmitt BA, Ouyang Y, Ye Y, Yu H, Shen J (2017) RABIF/MSS4 is a Rab-stabilizing holdase chaperone required for GLUT4 exocytosis. Proc Natl Acad Sci USA 114:E8224–E8233. https://doi.org/10.1073/pnas.1712176114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Muretta JM, Romenskaia I, Mastick CC (2008) Insulin releases Glut4 from static storage compartments into cycling endosomes and increases the rate constant for Glut4 exocytosis. J Biol Chem 283:311–323. https://doi.org/10.1074/jbc.M705756200

    Article  CAS  PubMed  Google Scholar 

  65. Yu H, Rathore SS, Lopez JA, Davis EM, James DE, Martin JL, Shen J (2013) Comparative studies of Munc18c and Munc18-1 reveal conserved and divergent mechanisms of Sec1/Munc18 proteins. Proc Natl Acad Sci USA 110:E3271–E3280. https://doi.org/10.1073/pnas.1311232110

    Article  PubMed  PubMed Central  Google Scholar 

  66. Wan C, Crisman L, Wang B, Tian Y, Wang S, Yang R, Datta I, Nomura T, Li S, Yu H et al (2021) AAGAB is an assembly chaperone regulating AP1 and AP2 clathrin adaptors. J Cell Sci 134:jcs258587. https://doi.org/10.1242/jcs.258587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Rathore SS, Liu Y, Yu H, Wan C, Lee M, Yin Q, Stowell MHB, Shen J (2019) Intracellular vesicle fusion requires a membrane-destabilizing peptide located at the juxtamembrane region of the v-SNARE. Cell Rep 29:4583–4592. https://doi.org/10.1016/j.celrep.2019.11.107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Liu Y, Wan C, Rathore SS, Stowell MHB, Yu H, Shen J (2021) SNARE zippering is suppressed by a conformational constraint that is removed by v-SNARE splitting. Cell Rep 34:108611. https://doi.org/10.1016/j.celrep.2020.108611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Yu H, Shen C, Liu Y, Menasche BL, Ouyang Y, Stowell MHB, Shen J (2018) SNARE zippering requires activation by SNARE-like peptides in Sec1/Munc18 proteins. Proc Natl Acad Sci USA 115:E8421–E8429. https://doi.org/10.1073/pnas.1802645115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Qian T, Li C, He R, Wan C, Liu Y, Yu H (2021) Calcium-dependent and -independent lipid transfer mediated by tricalbins in yeast. J Biol Chem 296:100729. https://doi.org/10.1016/j.jbc.2021.100729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Qian T, Li C, Liu F, Xu K, Wan C, Liu Y, Yu H (2022) Arabidopsis synaptotagmin 1 mediates lipid transport in a lipid composition-dependent manner. Traffic 23:346–356. https://doi.org/10.1111/tra.12844

    Article  CAS  PubMed  Google Scholar 

  72. Yu H, Liu Y, Gulbranson DR, Paine A, Rathore SS, Shen J (2016) Extended synaptotagmins are Ca2+-dependent lipid transfer proteins at membrane contact sites. Proc Natl Acad Sci USA 113:4362–4367. https://doi.org/10.1073/pnas.1517259113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Bian X, Saheki Y, De Camilli P (2018) Ca(2+) releases E-Syt1 autoinhibition to couple ER-plasma membrane tethering with lipid transport. EMBO J 37:219–234. https://doi.org/10.15252/embj.201797359

    Article  CAS  PubMed  Google Scholar 

  74. Saheki Y, Bian X, Schauder CM, Sawaki Y, Surma MA, Klose C, Pincet F, Reinisch KM, De Camilli P (2016) Control of plasma membrane lipid homeostasis by the extended synaptotagmins. Nat Cell Biol 18:504–515. https://doi.org/10.1038/ncb3339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Dr. Jingshi Shen and Dr. Chun Wan for helpful discussions and advice. We thank Dr. Zonghong Li for providing the pmCherry-Sec61b plasmid. We thank Dr. Xiaojun Wang for technical assistance.

Funding

This work was supported by the National Natural Science Foundation of China (NSFC) Grants (nos. 32270735, 91854117, 31871425, and 32100546), Natural Science Foundation of Jiangsu Province (BK20200036), Jiangsu Province’s Innovation Program (JSSCTD202142), and the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

Author information

Authors and Affiliations

Authors

Contributions

HY, CZ, and YL conceived the project. RH, FL, HW, and SH performed the experiments. RH, FL, KX, and YL analyzed the data. RH, KX, YL, CZ, and HY wrote the manuscript with input from all authors.

Corresponding authors

Correspondence to Yinghui Liu or Haijia Yu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest with the contents of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 2024 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, R., Liu, F., Wang, H. et al. ORP9 and ORP10 form a heterocomplex to transfer phosphatidylinositol 4-phosphate at ER-TGN contact sites. Cell. Mol. Life Sci. 80, 77 (2023). https://doi.org/10.1007/s00018-023-04728-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00018-023-04728-5

Keywords

Navigation