Skip to main content

Advertisement

Log in

RBM24 controls cardiac QT interval through CaMKIIδ splicing

  • Original Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Calcium/calmodulin-dependent kinase II delta (CaMKIIδ) is the predominant cardiac isoform and it is alternatively spliced to generate multiple variants. Variable variants allow for distinct localization and potentially different functions in the heart. Dysregulation of CaMKIIδ splicing has been demonstrated to be involved in the pathogenesis of heart diseases, such as cardiac hypertrophy, arrhythmia, and diastolic dysfunction. However, the mechanisms that regulate CaMKIIδ are incompletely understood. Here, we show that RNA binding motif protein 24 (RBM24) is a key splicing regulator of CaMKIIδ. RBM24 ablation leads to the aberrant shift of CaMKIIδ towards the δ-C isoform, which is known to activate the L-type Ca current. In line with this, we found marked alteration in Ca2+ handling followed by prolongation of the ventricular cardiac action potential and QT interval in RBM24 knockout mice, and these changes could be attenuated by treatment with an inhibitor of CaMKIIδ. Importantly, knockdown of RBM24 in human embryonic stem cell-derived cardiomyocytes showed similar electrophysiological abnormalities, suggesting the important role of RBM24 in the human heart. Thus, our data suggest that RBM24 is a critical regulator of CaMKIIδ to control the cardiac QT interval, highlighting the key role of splicing regulation in cardiac rhythm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author on reasonable request.

References

  1. GrayHeller Brown CBJ (2014) CaMKIIdelta subtypes: localization and function. Front Pharmacol 5:15. https://doi.org/10.3389/fphar.2014.00015

    Article  CAS  Google Scholar 

  2. Maier LS, Zhang T, Chen L, DeSantiago J, Brown JH, Bers DM (2003) Transgenic CaMKIIdeltaC overexpression uniquely alters cardiac myocyte Ca2+ handling: reduced SR Ca2+ load and activated SR Ca2+ release. Circ Res 92(8):904–911. https://doi.org/10.1161/01.RES.0000069685.20258.F1

    Article  CAS  Google Scholar 

  3. Beckendorf J, van den HoogenhofBacks MMGJ (2018) Physiological and unappreciated roles of CaMKII in the heart. Basic Res Cardiol 113(4):29. https://doi.org/10.1007/s00395-018-0688-8

    Article  CAS  Google Scholar 

  4. Zhang M, Gao H, Liu D, Zhong X, Shi X, Yu P, Jin L, Liu Y, Tang Y, Song Y, Liu J, Hu X, Li CY, Song L, Qin J, Wu F, Lan F, Zhang Y, Xiao RP (2019) CaMKII-delta9 promotes cardiomyopathy through disrupting UBE2T-dependent DNA repair. Nat Cell Biol 21(9):1152–1163. https://doi.org/10.1038/s41556-019-0380-8

    Article  CAS  Google Scholar 

  5. Duran J, Nickel L, Estrada M, Backs J, van den Hoogenhof MMG (2021) CaMKIIdelta splice variants in the healthy and diseased heart. Front Cell Dev Biol 9:644630. https://doi.org/10.3389/fcell.2021.644630

    Article  Google Scholar 

  6. Sag CM, Wadsack DP, Khabbazzadeh S, Abesser M, Grefe C, Neumann K, Opiela MK, Backs J, Olson EN, Brown JH, Neef S, Maier SK, Maier LS (2009) Calcium/calmodulin-dependent protein kinase II contributes to cardiac arrhythmogenesis in heart failure. Circ Heart Fail 2(6):664–675. https://doi.org/10.1161/CIRCHEARTFAILURE.109.865279

    Article  CAS  Google Scholar 

  7. Xu X, Yang D, Ding JH, Wang W, Chu PH, Dalton ND, Wang HY, Bermingham JR Jr, Ye Z, Liu F, Rosenfeld MG, Manley JL, Ross J Jr, Chen J, Xiao RP, Cheng H, Fu XD (2005) ASF/SF2-regulated CaMKIIdelta alternative splicing temporally reprograms excitation-contraction coupling in cardiac muscle. Cell 120(1):59–72. https://doi.org/10.1016/j.cell.2004.11.036

    Article  CAS  Google Scholar 

  8. van den Hoogenhof MMG, Beqqali A, Amin AS, van der Made I, Aufiero S, Khan MAF, Schumacher CA, Jansweijer JA, van Spaendonck-Zwarts KY, Remme CA, Backs J, Verkerk AO, Baartscheer A, Pinto YM, Creemers EE (2018) RBM20 mutations induce an arrhythmogenic dilated cardiomyopathy related to disturbed calcium handling. Circulation 138(13):1330–1342. https://doi.org/10.1161/CIRCULATIONAHA.117.031947

    Article  CAS  Google Scholar 

  9. Li C, Cai X, Sun H, Bai T, Zheng X, Zhou XW, Chen X, Gill DL, Li J, Tang XD (2011) The deltaA isoform of calmodulin kinase II mediates pathological cardiac hypertrophy by interfering with the HDAC4-MEF2 signaling pathway. Biochem Biophys Res Commun 409(1):125–130. https://doi.org/10.1016/j.bbrc.2011.04.128

    Article  CAS  Google Scholar 

  10. Xu XQ, Soo SY, Sun W, Zweigerdt R (2009) Global expression profile of highly enriched cardiomyocytes derived from human embryonic stem cells. Stem Cells 27(9):2163–2174. https://doi.org/10.1002/stem.166

    Article  CAS  Google Scholar 

  11. Poon KL, Tan KT, Wei YY, Ng CP, Colman A, Korzh V, Xu XQ (2012) RNA-binding protein RBM24 is required for sarcomere assembly and heart contractility. Cardiovasc Res 94(3):418–427. https://doi.org/10.1093/cvr/cvs095

    Article  CAS  Google Scholar 

  12. Yang J, Hung LH, Licht T, Kostin S, Looso M, Khrameeva E, Bindereif A, Schneider A, Braun T (2014) RBM24 is a major regulator of muscle-specific alternative splicing. Dev Cell 31(1):87–99. https://doi.org/10.1016/j.devcel.2014.08.025

    Article  CAS  Google Scholar 

  13. Zhang T, Lin Y, Liu J, Zhang ZG, Fu W, Guo LY, Pan L, Kong X, Zhang MK, Lu YH, Huang ZR, Xie Q, Li WH, Xu XQ (2016) Rbm24 regulates alternative splicing switch in embryonic stem cell cardiac lineage differentiation. Stem Cells 34(7):1776–1789. https://doi.org/10.1002/stem.2366

    Article  CAS  Google Scholar 

  14. Liu J, Kong X, Lee YM, Zhang MK, Guo LY, Lin Y, Lim TK, Lin Q, Xu XQ (2017) Stk38 Modulates Rbm24 protein stability to regulate sarcomere assembly in cardiomyocytes. Sci Rep 7:44870. https://doi.org/10.1038/srep44870

    Article  CAS  Google Scholar 

  15. Liu J, Kong X, Zhang M, Yang X, Xu X (2019) RNA binding protein 24 deletion disrupts global alternative splicing and causes dilated cardiomyopathy. Protein Cell 10(6):405–416. https://doi.org/10.1007/s13238-018-0578-8

    Article  CAS  Google Scholar 

  16. Zheng L, Yuan H, Zhang M, Wang C, Cai X, Liu J, Xu XQ (2020) Rbm24 regulates inner-ear-specific alternative splicing and is essential for maintaining auditory and motor coordination. RNA Biol. https://doi.org/10.1080/15476286.2020.1817265

    Article  Google Scholar 

  17. Zhang M, Han Y, Liu J, Liu L, Zheng L, Chen Y, Xia R, Yao D, Cai X, Xu X (2020) Rbm24 modulates adult skeletal muscle regeneration via regulation of alternative splicing. Theranostics 10(24):11159–11177. https://doi.org/10.7150/thno.44389

    Article  CAS  Google Scholar 

  18. Mitchell GF, JeronKoren AG (1998) Measurement of heart rate and Q–T interval in the conscious mouse. Am J Physiol 274(3):H747-751. https://doi.org/10.1152/ajpheart.1998.274.3.H747

    Article  CAS  Google Scholar 

  19. Ackers-Johnson M, Li PY, Holmes AP, O’Brien SM, Pavlovic D, Foo RS (2016) A simplified, Langendorff-free method for concomitant isolation of viable cardiac myocytes and nonmyocytes from the adult mouse heart. Circ Res 119(8):909–920. https://doi.org/10.1161/CIRCRESAHA.116.309202

    Article  CAS  Google Scholar 

  20. Giudicessi JR, Roden DM, Wilde AAM, Ackerman MJ (2018) Classification and reporting of potentially proarrhythmic common genetic variation in long QT syndrome genetic testing. Circulation 137(6):619–630. https://doi.org/10.1161/CIRCULATIONAHA.117.030142

    Article  CAS  Google Scholar 

  21. Schwartz PJ, Ackerman MJ, Antzelevitch C, Bezzina CR, Borggrefe M, Cuneo BF, Wilde AAM (2020) Inherited cardiac arrhythmias. Nat Rev Dis Prim 6(1):58. https://doi.org/10.1038/s41572-020-0188-7

    Article  Google Scholar 

  22. Ljubojevic-Holzer S, Herren AW, Djalinac N, Voglhuber J, Morotti S, Holzer M, Wood BM, Abdellatif M, Matzer I, Sacherer M, Radulovic S, Wallner M, Ivanov M, Wagner S, Sossalla S, von Lewinski D, Pieske B, Brown JH, Sedej S, Bossuyt J, Bers DM (2020) CaMKIIdeltaC drives early adaptive Ca(2+) change and late eccentric cardiac hypertrophy. Circ Res 127(9):1159–1178. https://doi.org/10.1161/CIRCRESAHA.120.316947

    Article  CAS  Google Scholar 

  23. Zhang T, Maier LS, Dalton ND, Miyamoto S, Ross J Jr, Bers DM, Brown JH (2003) The deltaC isoform of CaMKII is activated in cardiac hypertrophy and induces dilated cardiomyopathy and heart failure. Circ Res 92(8):912–919. https://doi.org/10.1161/01.RES.0000069686.31472.C5

    Article  CAS  Google Scholar 

  24. Le Quang K, Benito B, Naud P, Qi XY, Shi YF, Tardif JC, Gillis MA, Dobrev D, Charpentier F, Nattel S (2013) T-type calcium current contributes to escape automaticity and governs the occurrence of lethal arrhythmias after atrioventricular block in mice. Circ Arrhythm Electrophysiol 6(4):799–808. https://doi.org/10.1161/CIRCEP.113.000407

    Article  CAS  Google Scholar 

  25. Adler A, Novelli V, Amin AS, Abiusi E, Care M, Nannenberg EA, Feilotter H, Amenta S, Mazza D, Bikker H, Sturm AC, Garcia J, Ackerman MJ, Hershberger RE, Perez MV, Zareba W, Ware JS, Wilde AAM, Gollob MH (2020) An international, multicentered, evidence-based reappraisal of genes reported to cause congenital long QT syndrome. Circulation 141(6):418–428. https://doi.org/10.1161/CIRCULATIONAHA.119.043132

    Article  CAS  Google Scholar 

  26. Hof T, Simard C, Rouet R, Salle L, Guinamard R (2013) Implication of the TRPM4 nonselective cation channel in mammalian sinus rhythm. Heart Rhythm 10(11):1683–1689. https://doi.org/10.1016/j.hrthm.2013.08.014

    Article  Google Scholar 

  27. Wiedmann F, Schlund D, Kraft M, Nietfeld J, Katus HA, Schmidt C, Thomas D (2020) Electrophysiological effects of non-vitamin K antagonist oral anticoagulants on atrial repolarizing potassium channels. Europace 22(9):1409–1418. https://doi.org/10.1093/europace/euaa129

    Article  Google Scholar 

  28. Hegyi B, BersBossuyt DMJ (2019) CaMKII signaling in heart diseases: emerging role in diabetic cardiomyopathy. J Mol Cell Cardiol 127:246–259. https://doi.org/10.1016/j.yjmcc.2019.01.001

    Article  CAS  Google Scholar 

  29. Wagner S, Hacker E, Grandi E, Weber SL, Dybkova N, Sossalla S, Sowa T, Fabritz L, Kirchhof P, Bers DM, Maier LS (2009) Ca/calmodulin kinase II differentially modulates potassium currents. Circ Arrhythm Electrophysiol 2(3):285–294. https://doi.org/10.1161/CIRCEP.108.842799

    Article  CAS  Google Scholar 

  30. Shang LL, Pfahnl AE, Sanyal S, Jiao Z, Allen J, Banach K, Fahrenbach J, Weiss D, Taylor WR, Zafari AM, Dudley SC Jr (2007) Human heart failure is associated with abnormal C-terminal splicing variants in the cardiac sodium channel. Circ Res 101(11):1146–1154. https://doi.org/10.1161/CIRCRESAHA.107.152918

    Article  CAS  Google Scholar 

  31. Fukuyama M, Ohno S, Wang Q, Shirayama T, Itoh H, Horie M (2014) Nonsense-mediated mRNA decay due to a CACNA1C splicing mutation in a patient with Brugada syndrome. Heart Rhythm 11(4):629–634. https://doi.org/10.1016/j.hrthm.2013.12.011

    Article  Google Scholar 

  32. Mura M, Mehta A, Ramachandra CJ, Zappatore R, Pisano F, Ciuffreda MC, Barbaccia V, Crotti L, Schwartz PJ, Shim W, Gnecchi M (2017) The KCNH2-IVS9-28A/G mutation causes aberrant isoform expression and hERG trafficking defect in cardiomyocytes derived from patients affected by long QT Syndrome type 2. Int J Cardiol 240:367–371. https://doi.org/10.1016/j.ijcard.2017.04.038

    Article  Google Scholar 

  33. Gao G, Xie A, Huang SC, Zhou A, Zhang J, Herman AM, Ghassemzadeh S, Jeong EM, Kasturirangan S, Raicu M, Sobieski MA 2nd, Bhat G, Tatooles A, Benz EJ Jr, Kamp TJ, Dudley SC Jr (2011) Role of RBM25/LUC7L3 in abnormal cardiac sodium channel splicing regulation in human heart failure. Circulation 124(10):1124–1131. https://doi.org/10.1161/CIRCULATIONAHA.111.044495

    Article  CAS  Google Scholar 

  34. MaltsevAVKokozYM, (2020) Cardiomyocytes generating spontaneous Ca(2+)-transients as tools for precise estimation of sarcoplasmic reticulum Ca(2+) transport. Arch Biochem Biophys 693:108542. https://doi.org/10.1016/j.abb.2020.108542

    Article  CAS  Google Scholar 

  35. Fischer TH, Herting J, Tirilomis T, Renner A, Neef S, Toischer K, Ellenberger D, Forster A, Schmitto JD, Gummert J, Schondube FA, Hasenfuss G, Maier LS, Sossalla S (2013) Ca2+/calmodulin-dependent protein kinase II and protein kinase A differentially regulate sarcoplasmic reticulum Ca2+ leak in human cardiac pathology. Circulation 128(9):970–981. https://doi.org/10.1161/CIRCULATIONAHA.113.001746

    Article  CAS  Google Scholar 

  36. Gaertner A, BrodehlMilting AH (2019) Screening for mutations in human cardiomyopathy—is RBM24 a new but rare disease gene? Protein Cell 10(6):393–394. https://doi.org/10.1007/s13238-018-0590-z

    Article  Google Scholar 

Download references

Acknowledgements

We thank Dr. Xiao Yang (Beijing Institute of Lifeomics) for the kind donation of αMhc-Cre knockin mouse and Maria Grazia Romanelli (University of Verona) for her kind donation of the GFP-RBM20 plasmid. We are thankful to all members of the Institute of Stem Cell and Regenerative Medicine (School of Medicine, Xiamen University).

Funding

This work was supported by the National Key R&D program of China (2018YFA0107304), National Natural Science Foundation of China (NSFC) (82070424 and 81871744), Natural Science Foundation of Fujian Province (2021J01011), Guangdong Natural Science Foundation (2017A030313113), and the Fundamental Research Funds for the Central Universities (20720220058).

Author information

Authors and Affiliations

Authors

Contributions

JL designed and executed experiments, analyzed data, provided financial support and wrote the manuscript; KW, XL, LP, WZ, and JH executed experiments and analyzed data; HL and ZS provided resource and administration support; XQX designed the research, analyzed data, provided financial support and wrote the manuscript.

Corresponding author

Correspondence to Xiu Qin Xu.

Ethics declarations

Conflict of interest

The authors have declared that no competing interest exists.

Ethical approval

This study was approved by the Xiamen University, China.

Consent for publication

All authors have been involved in writing the manuscript and consented to publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Wang, K., Liu, X. et al. RBM24 controls cardiac QT interval through CaMKIIδ splicing. Cell. Mol. Life Sci. 79, 613 (2022). https://doi.org/10.1007/s00018-022-04624-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00018-022-04624-4

Keywords

Navigation