Skip to main content

Advertisement

Log in

B3galt5 deficiency attenuates hepatocellular carcinoma by suppressing mTOR/p70s6k-mediated glycolysis

  • Original Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Hepatocellular carcinoma (HCC) is one of the most common malignancies with high morbidity and mortality. Beta-1,3-galactosyltransferase 5 (b3galt5) plays crucial roles in protein glycosylation, but its function in HCC remains unclear. Here, we investigated the role and underlying mechanism of b3galt5 in HCC. We found that b3galt5 is highly expressed and associated with a poor prognosis in HCC patients. In vitro studies showed that b3galt5 promoted the proliferation and survival of HCC cells. We also demonstrated that b3galt5 deficiency suppressed hepatocarcinogenesis in DEN/TCPOBOP-induced HCC. Further investigation confirmed that b3galt5 promoted aerobic glycolysis in HCC. Mechanistically, b3galt5 promoted glycolysis by activating the mTOR/p70s6k pathway through O-linked glycosylation modification on mTOR. Moreover, p70s6k inhibition reduced the expression of key glycolytic enzymes and the glycolysis rate in b3galt5-overexpressing cells. Our study uncovers a novel mechanism by which b3galt5 mediates glycolysis in HCC and highlights the b3galt5-mTOR/p70s6k axis as a potential target for HCC therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Availability of data and materials

All data generated during this study are included in this published article and its supplementary files.

References

  1. Bennett EP, Mandel U, Clausen H, Gerken TA, Fritz TA, Tabak LA (2012) Control of mucin-type O-glycosylation: a classification of the polypeptide GalNAc-transferase gene family. Glycobiology 22(6):736–756

    Article  CAS  Google Scholar 

  2. Cherepanova N, Shrimal S, Gilmore R (2016) N-linked glycosylation and homeostasis of the endoplasmic reticulum. Curr Opin Cell Biol 41:57–65

    Article  CAS  Google Scholar 

  3. Zhang S, Cao X, Gao Q, Liu Y (2017) Protein glycosylation in viral hepatitis-related HCC: characterization of heterogeneity, biological roles, and clinical implications. Cancer Lett 406:64–70

    Article  CAS  Google Scholar 

  4. Chikhaliwala P, Rai R, Chandra S (2019) Simultaneous voltammetric immunodetection of alpha-fetoprotein and glypican-3 using a glassy carbon electrode modified with magnetite-conjugated dendrimers. Mikrochim Acta 186:255

    Article  Google Scholar 

  5. Eichler J (2019) Protein glycosylation. Curr Biol. 29(7):229–231

    Article  Google Scholar 

  6. Salvini R, Bardoni A, Valli M, Trinchera M (2001) beta 1,3-galactosyltransferase beta 3Gal-T5 acts on the GlcNAcbeta 1–>3Galbeta 1–>4GlcNAcbeta 1–>R sugar chains of carcinoembryonic antigen and other N-linked glycoproteins and is down-regulated in colon adenocarcinomas. J Biol Chem 276:3564–3573

    Article  CAS  Google Scholar 

  7. Zhou D, Berger EG, Hennet T (1999) Molecular cloning of a human UDP-galactose:GlcNAcbeta1,3GalNAc beta1, 3 galactosyltransferase gene encoding an O-linked core3-elongation enzyme. Eur J Biochem 263:571–576

    Article  CAS  Google Scholar 

  8. Liao YM, Wang YH, Hung JT et al (2021) High B3GALT5 expression confers poor clinical outcome and contributes to tumor progression and metastasis in breast cancer. Breast Cancer Res 23:5

    Article  CAS  Google Scholar 

  9. Chuang PK, Hsiao M, Hsu TL et al (2019) Signaling pathway of globo-series glycosphingolipids and β1,3-galactosyltransferase V (β3GalT5) in breast cancer. Proc Natl Acad Sci U S A 116(9):3518–3523

    Article  CAS  Google Scholar 

  10. Engle DD, Tiriac H, Rivera KD et al (2019) The glycan CA19-9 promotes pancreatitis and pancreatic cancer in mice. Science 364(6446):1156–1162

    Article  CAS  Google Scholar 

  11. Seko A, Kataoka F, Aoki D et al (2009) Beta 1,3-galactosyltransferases-4/5 are novel tumor markers for gynecological cancers. Tumour Biol 30:43–50

    Article  CAS  Google Scholar 

  12. Estes C, Anstee QM, Arias-Loste MT et al (2018) Modeling NAFLD disease burden in China, France, Germany, Italy, Japan, Spain, United Kingdom, and United States for the period 2016–2030. J Hepatol 69(4):896–904

    Article  Google Scholar 

  13. Beyoğlu D, Imbeaud S, Maurhofer O et al (2013) Tissue metabolomics of hepatocellular carcinoma: tumor energy metabolism and the role of transcriptomic classification. Hepatology 58:229–238

    Article  Google Scholar 

  14. Ma R, Zhang W, Tang K et al (2013) Switch of glycolysis to gluconeogenesis by dexamethasone for treatment of hepatocarcinoma. Nat Commun 4:2508

    Article  Google Scholar 

  15. Kowalik MA, Guzzo G, Morandi A et al (2016) Metabolic reprogramming identifies the most aggressive lesions at early phases of hepatic carcinogenesis. Oncotarget 7(22):32375–32393

    Article  Google Scholar 

  16. Ling S, Shan Q, Zhan Q et al (2020) USP22 promotes hypoxia-induced hepatocellular carcinoma stemness by a HIF1α/USP22 positive feedback loop upon TP53 inactivation. Gut 69:1322–1334

    Article  CAS  Google Scholar 

  17. Weng ML, Chen WK, Chen XY et al (2020) Fasting inhibits aerobic glycolysis and proliferation in colorectal cancer via the Fdft1-mediated AKT/mTOR/HIF1α pathway suppression. Nat Commun 11:1869

    Article  CAS  Google Scholar 

  18. Wu H, Pan L, Gao C et al (2019) Quercetin inhibits the proliferation of glycolysis-addicted HCC Cells by reducing hexokinase 2 and Akt-mTOR pathway. Molecules 24:2

    Google Scholar 

  19. Cheng SC, Quintin J, Cramer RA et al (2014) mTOR- and HIF-1α-mediated aerobic glycolysis as metabolic basis for trained immunity. Science 345(6204):1250684

    Article  Google Scholar 

  20. Kuo HH, Lin RJ, Hung JT et al (2017) High expression FUT1 and B3GALT5 is an independent predictor of postoperative recurrence and survival in hepatocellular carcinoma. Sci Rep 7(1):10750

    Article  Google Scholar 

  21. Kang X, Wang N, Pei C et al (2012) Glycan-related gene expression signatures in human metastatic hepatocellular carcinoma cells. Exp Ther Med 3:415–422

    Article  CAS  Google Scholar 

  22. Chung TW, Kim SJ, Choi HJ et al (2014) Hepatitis B virus X protein specially regulates the sialyl Lewis a synthesis among glycosylation events for metastasis. Mol Cancer 13:222

    Article  Google Scholar 

  23. Dorsch MA, de Yaniz MG, Fiorani F et al (2019) A descriptive study of lectin histochemistry of the placenta in cattle following inoculation of Neospora caninum. J Comp Pathol 166:45–53. https://doi.org/10.1016/j.jcpa.2018.10.172

    Article  CAS  Google Scholar 

  24. Jang JS, Wang X, Vedell PT, Wen J, Zhang J, Ellison DW, Evans JM, Johnson SH, Yang P, Sukov WR et al (2016) Custom gene capture and next-generation sequencing to resolve discordant ALK status by FISH and IHC in lung adenocarcinoma. J Thorac Oncol 11:1891–1900

    Article  Google Scholar 

  25. Balsa E, Soustek MS, Thomas A et al (2019) ER and nutrient stress promote assembly of respiratory chain supercomplexes through the PERK-eIF2α axis. Mol Cell 74:877–90.e6

    Article  CAS  Google Scholar 

  26. Saada A, Vogel RO, Hoefs SJ et al (2009) Mutations in NDUFAF3 (C3ORF60), encoding an NDUFAF4 (C6ORF66)-interacting complex I assembly protein, cause fatal neonatal mitochondrial disease. Am J Hum Genet 84:718–727

    Article  CAS  Google Scholar 

  27. Bourens M, Barrientos A (2017) A CMC1-knockout reveals translation-independent control of human mitochondrial complex IV biogenesis. EMBO Rep 18:477–494

    Article  CAS  Google Scholar 

  28. Van Vranken JG, Bricker DK, Dephoure N et al (2014) SDHAF4 promotes mitochondrial succinate dehydrogenase activity and prevents neurodegeneration. Cell Metab 20:241–252

    Article  Google Scholar 

  29. Iansante V, Choy PM, Fung SW et al (2015) PARP14 promotes the Warburg effect in hepatocellular carcinoma by inhibiting JNK1-dependent PKM2 phosphorylation and activation. Nat Commun 6:7882

    Article  CAS  Google Scholar 

  30. Kato T, Wang Y, Yamaguchi K et al (2001) Overexpression of lysosomal-type sialidase leads to suppression of metastasis associated with reversion of malignant phenotype in murine B16 melanoma cells. Int J Cancer 92(6):797–804

    Article  CAS  Google Scholar 

  31. Li JV, Ng CA, Cheng D, Zhou Z, Yao M, Guo Y, Yu ZY, Ramaswamy Y, Ju LA, Kuchel PW, Feneley MP, Fatkin D, Cox CD (2021) Modified N-linked glycosylation status predicts trafficking defective human Piezo1 channel mutations. Commun Biol 4:1038. https://doi.org/10.1038/s42003-021-02528-w

    Article  CAS  Google Scholar 

  32. Yang S, Onigman P, Wu WW, Sjogren J, Nyhlen H, Shen RF, Cipollo J (2018) Deciphering protein O-glycosylation: solid-phase chemoenzymatic cleavage and enrichment. Anal Chem 90:8261–8269. https://doi.org/10.1021/acs.analchem.8b01834

    Article  CAS  Google Scholar 

  33. Yao L, Xuan Y, Zhang H, Yang B, Ma X, Wang T, Meng T, Sun W, Wei H, Ma X et al (2021) Reciprocal REGγ-mTORC1 regulation promotes glycolytic metabolism in hepatocellular carcinoma. Oncogene 40:677–692

    Article  CAS  Google Scholar 

  34. Pusapati RV, Daemen A, Wilson C et al (2016) mTORC1-dependent metabolic reprogramming underlies escape from glycolysis addiction in cancer cells. Cancer Cell 29(4):548–562

    Article  CAS  Google Scholar 

  35. Spiro RG (2002) Protein glycosylation: nature, distribution, enzymatic formation, and disease implications of glycopeptide bonds. Glycobiology 12:43R-56R

    Article  CAS  Google Scholar 

  36. Lee HH, Wang YN, Xia W et al (2019) Removal of N-linked glycosylation enhances PD-L1 detection and predicts anti-PD-1/PD-L1 therapeutic efficacy. Cancer Cell 36:168–78.e4

    Article  CAS  Google Scholar 

  37. Huang Y, Zhang HL, Li ZL, Du T, Chen YH, Wang Y, Ni HH, Zhang KM, Mai J, Hu BX, Huang JH, Zhou LH, Yang D, Peng XD, Feng GK, Tang J, Zhu XF, Deng R (2021) FUT8-mediated aberrant N-glycosylation of B7H3 suppresses the immune response in triple-negative breast cancer. Nat Commun 12:2672. https://doi.org/10.1038/s41467-021-22618-x

    Article  CAS  Google Scholar 

  38. Kalra AV, Campbell RB (2007) Mucin impedes cytotoxic effect of 5-FU against growth of human pancreatic cancer cells: overcoming cellular barriers for therapeutic gain. Br J Cancer 97:910–918. https://doi.org/10.1038/sj.bjc.6603972

    Article  CAS  Google Scholar 

  39. Yin S, Liu L, Gan W (2021) The roles of post-translational modifications on mTOR signaling. Int J Mol Sci 22:2

    Article  Google Scholar 

  40. Pyo KE, Kim CR, Lee M, Kim JS, Kim KI, Baek SH (2018) ULK1 O-GlcN acylation is crucial for activating VPS34 via ATG14L during autophagy initiation. Cell Rep 25:2878-2890.e4. https://doi.org/10.1016/j.celrep.2018.11.042

    Article  CAS  Google Scholar 

  41. Ednie AR, Bennett ES (2020) Intracellular O-linked glycosylation directly regulates cardiomyocyte L-type Ca(2+) channel activity and excitation-contraction coupling. Basic Res Cardiol 115:59. https://doi.org/10.1007/s00395-020-00820-0

    Article  CAS  Google Scholar 

  42. Wang C, Li Y, Yan S, Wang H, Shao X, Xiao M, Yang B, Qin G, Kong R, Chen R, Zhang N (2020) Interactome analysis reveals that lncRNA HULC promotes aerobic glycolysis through LDHA and PKM2. Nat Commun 11:3162. https://doi.org/10.1038/s41467-020-16966-3

    Article  CAS  Google Scholar 

  43. Yao D, Xu L, Xu O, Li R, Chen M, Shen H, Zhu H, Zhang F, Yao D, Chen YF, Oparil S, Zhang Z, Gong K (2018) O-Linked β-N-acetylglucosamine modification of A20 enhances the inhibition of NF-κB (nuclear factor-κB) activation and elicits vascular protection after acute endoluminal arterial injury. Arterioscler Thromb Vasc Biol 38:1309–1320. https://doi.org/10.1161/ATVBAHA.117.310468

    Article  CAS  Google Scholar 

  44. Barkeer S, Chugh S, Batra SK, Ponnusamy MP (2018) Glycosylation of cancer stem cells: function in stemness, tumorigenesis, and metastasis. Neoplasia 20:813–825

    Article  CAS  Google Scholar 

  45. Sun X, He Z, Guo L et al (2021) ALG3 contributes to stemness and radioresistance through regulating glycosylation of TGF-β receptor II in breast cancer. J Exp Clin Cancer Res 40:149

    Article  CAS  Google Scholar 

  46. Che MI, Huang J, Hung JS et al (2014) β1, 4-N-acetylgalactosaminyltransferase III modulates cancer stemness through EGFR signaling pathway in colon cancer cells. Oncotarget 5:3673–3684

    Article  Google Scholar 

  47. Menendez JA (2015) Metabolic control of cancer cell stemness: lessons from iPS cells. Cell Cycle 14:3801–3811

    Article  CAS  Google Scholar 

  48. Peng F, Wang JH, Fan WJ et al (2018) Glycolysis gatekeeper PDK1 reprograms breast cancer stem cells under hypoxia. Oncogene 37:1062–1074

    Article  CAS  Google Scholar 

  49. Honjo S, Ajani JA, Scott AW et al (2014) Metformin sensitizes chemotherapy by targeting cancer stem cells and the mTOR pathway in esophageal cancer. Int J Oncol 45:567–574

    Article  CAS  Google Scholar 

  50. Mohammed A, Janakiram NB, Brewer M et al (2013) Antidiabetic drug metformin prevents progression of pancreatic cancer by targeting in part cancer stem cells and mTOR signaling. Transl Oncol 6:649–659

    Article  Google Scholar 

  51. Zhou J, Wulfkuhle J, Zhang H et al (2007) Activation of the PTEN/mTOR/STAT3 pathway in breast cancer stem-like cells is required for viability and maintenance. Proc Natl Acad Sci U S A 104:16158–16163

    Article  CAS  Google Scholar 

  52. Su R, Nan H, Guo H et al (2016) Associations of components of PTEN/AKT/mTOR pathway with cancer stem cell markers and prognostic value of these biomarkers in hepatocellular carcinoma. Hepatol Res 46:1380–1391

    Article  CAS  Google Scholar 

  53. Ma J, Kala S, Yung S, Chan TM, Cao Y, Jiang Y, Liu X, Giorgio S, Peng L (2018) Blocking stemness and metastatic properties of ovarian cancer cells by targeting p70s6k with dendrimer nanovector-based siRNA delivery. Mol Ther 26:70–83

    Article  CAS  Google Scholar 

  54. Magalhães-Novais S, Bermejo-Millo JC, Loureiro R, Mesquita KA, Domingues MR, Maciel E, Melo T, Baldeiras I, Erickson JR, Holy J et al (2020) Cell quality control mechanisms maintain stemness and differentiation potential of P19 embryonic carcinoma cells. Autophagy 16:313–333

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to Prof. Jinhan He at the Department of Pharmacy, West China Hospital of Sichuan University, for sharing the b3galt5-/- mice.

Funding

This work was supported by the National Natural Science Foundation of China (81972745 and 81703072), the Ten Thousand Plan Youth Talent Support Program of Zhejiang Province (ZJWR0108009), and the Zhejiang Medical Innovative Discipline Construction Project-2016.

Author information

Authors and Affiliations

Authors

Contributions

PHM and HWD designed and supervised the project; ZXL, LH, LQ, WHD, LYL, and HYC performed the animal and cell experiments; WHD and ZXL performed the glycosidase experiment, ZRJ analyzed the GEO database; and ZXL, LH, RLL and HWD wrote and edited the manuscript. All of the coauthors reviewed the manuscript.

Corresponding authors

Correspondence to Hongming Pan or Weidong Han.

Ethics declarations

Competing interests

The authors declare no conflicts of interest.

Ethics approval and consent to participate

This study was approved by the Ethics Committee of Zhejiang University. All the animal experiments performed in this study were approved by the Institutional Animal Care and Use Committee of Zhejiang University.

Consent for publication

All authors consent this manuscript to be published.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 19 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Liu, H., Wang, H. et al. B3galt5 deficiency attenuates hepatocellular carcinoma by suppressing mTOR/p70s6k-mediated glycolysis. Cell. Mol. Life Sci. 80, 8 (2023). https://doi.org/10.1007/s00018-022-04601-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00018-022-04601-x

Keywords

Navigation