Skip to main content

Advertisement

Log in

PHLDA1 promotes glioblastoma cell growth via sustaining the activation state of Ras

  • Original Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Activation of the Ras signaling pathway promotes the growth of malignant human glioblastoma multiforme (GBM). Mutations in Ras are rare in GBM, elevated levels of activated Ras are prevalently observed in GBM. However, the potential mechanism of how Ras is activated in GBM remains unclear. In this study, we screened a new interacted protein of Ras, PHLDA1. Our findings confirmed that PHLDA1 acted as an oncogene and promoted glioma progression and recurrence. We demonstrated that PHLDA1 was upregulated in GBM tissues and cells. PHLDA1 overexpression promoted cell proliferation and tumor growth. In terms of mechanism, PHLDA1 promoted cell proliferation by regulating Ras/Raf/Mek/Erk signaling pathway. Moreover, Src promotes GTPase activity of Ras via tyrosine 32 phosphorylation. PHLDA1 and Src competed for binding with Ras, inhibiting Ras phosphorylation by Src and rescuing Ras activity. This study may provide a new idea of the molecular mechanism underlying glioma progression and a novel potential therapeutic target for comprehensive glioblastoma treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Availability of data and material

The data sets used and analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Louis DN, Holland EC, Cairncross JG (2001) Glioma classification: a molecular reappraisal. Am J Pathol 159(3):779–786. https://doi.org/10.1016/S0002-9440(10)61750-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Kleihues P, Ohgaki H (1999) Primary and secondary glioblastomas: from concept to clinical diagnosis. Neuro Oncol 1(1):44–51. https://doi.org/10.1093/neuonc/1.1.44

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Holland EC (2001) Gliomagenesis: genetic alterations and mouse models. Nat Rev Genet 2(2):120–129. https://doi.org/10.1038/35052535

    Article  CAS  PubMed  Google Scholar 

  4. Jiang BH, Aoki M, Zheng JZ, Li J, Vogt PK (1999) Myogenic signaling of phosphatidylinositol 3-kinase requires the serine-threonine kinase Akt/protein kinase B. Proc Natl Acad Sci U S A 96(5):2077–2081. https://doi.org/10.1073/pnas.96.5.2077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Mattingly RR (2013) Activated ras as a therapeutic target: constraints on directly targeting ras isoforms and wild-type versus mutated proteins. ISRN Oncol 2013:536529. https://doi.org/10.1155/2013/536529

    Article  PubMed  PubMed Central  Google Scholar 

  6. DeClue JE, Papageorge AG, Fletcher JA, Diehl SR, Ratner N, Vass WC, Lowy DR (1992) Abnormal regulation of mammalian p21ras contributes to malignant tumor growth in von Recklinghausen (type 1) neurofibromatosis. Cell 69(2):265–273. https://doi.org/10.1016/0092-8674(92)90407-4

    Article  CAS  PubMed  Google Scholar 

  7. Haslam RJ, Koide HB, Hemmings BA (1993) Pleckstrin domain homology. Nature 363(6427):309–310. https://doi.org/10.1038/363309b0

    Article  CAS  PubMed  Google Scholar 

  8. Ingley E, Hemmings BA (1994) Pleckstrin homology (PH) domains in signal transduction. J Cell Biochem 56(4):436–443. https://doi.org/10.1002/jcb.240560403

    Article  CAS  PubMed  Google Scholar 

  9. Saraste M, Hyvonen M (1995) Pleckstrin homology domains: a fact file. Curr Opin Struct Biol 5(3):403–408. https://doi.org/10.1016/0959-440x(95)80104-9

    Article  CAS  PubMed  Google Scholar 

  10. Nagai MA, Fregnani JH, Netto MM, Brentani MM, Soares FA (2007) Down-regulation of PHLDA1 gene expression is associated with breast cancer progression. Breast Cancer Res Treat 106(1):49–56. https://doi.org/10.1007/s10549-006-9475-6

    Article  CAS  PubMed  Google Scholar 

  11. Neef R, Kuske MA, Prols E, Johnson JP (2002) Identification of the human PHLDA1/TDAG51 gene: down-regulation in metastatic melanoma contributes to apoptosis resistance and growth deregulation. Cancer Res 62(20):5920–5929

    CAS  PubMed  Google Scholar 

  12. Gomes I, Xiong W, Miki T, Rosner MR (1999) A proline- and glutamine-rich protein promotes apoptosis in neuronal cells. J Neurochem 73(2):612–622. https://doi.org/10.1046/j.1471-4159.1999.0730612.x

    Article  CAS  PubMed  Google Scholar 

  13. Hossain GS, van Thienen JV, Werstuck GH, Zhou J, Sood SK, Dickhout JG, de Koning AB, Tang D, Wu D, Falk E, Poddar R, Jacobsen DW, Zhang K, Kaufman RJ, Austin RC (2003) TDAG51 is induced by homocysteine, promotes detachment-mediated programmed cell death, and contributes to the cevelopment of atherosclerosis in hyperhomocysteinemia. J Biol Chem 278(32):30317–30327. https://doi.org/10.1074/jbc.M212897200

    Article  CAS  PubMed  Google Scholar 

  14. Hayashida N, Inouye S, Fujimoto M, Tanaka Y, Izu H, Takaki E, Ichikawa H, Rho J, Nakai A (2006) A novel HSF1-mediated death pathway that is suppressed by heat shock proteins. EMBO J 25(20):4773–4783. https://doi.org/10.1038/sj.emboj.7601370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Oberst MD, Beberman SJ, Zhao L, Yin JJ, Ward Y, Kelly K (2008) TDAG51 is an ERK signaling target that opposes ERK-mediated HME16C mammary epithelial cell transformation. BMC Cancer 8:189. https://doi.org/10.1186/1471-2407-8-189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hinz T, Flindt S, Marx A, Janssen O, Kabelitz D (2001) Inhibition of protein synthesis by the T cell receptor-inducible human TDAG51 gene product. Cell Signal 13(5):345–352

    Article  CAS  PubMed  Google Scholar 

  17. Zhao P, Lu Y, Liu L (2015) Correlation of decreased expression of PHLDA1 protein with malignant phenotype of gastric adenocarcinoma. Int J Clin Exp Pathol 8(5):5230–5235

    PubMed  PubMed Central  Google Scholar 

  18. Sakthianandeswaren A, Christie M, D’Andreti C, Tsui C, Jorissen RN, Li S, Fleming NI, Gibbs P, Lipton L, Malaterre J, Ramsay RG, Phesse TJ, Ernst M, Jeffery RE, Poulsom R, Leedham SJ, Segditsas S, Tomlinson IP, Bernhard OK, Simpson RJ, Walker F, Faux MC, Church N, Catimel B, Flanagan DJ, Vincan E, Sieber OM (2011) PHLDA1 expression marks the putative epithelial stem cells and contributes to intestinal tumorigenesis. Cancer Res 71(10):3709–3719. https://doi.org/10.1158/0008-5472.CAN-10-2342

    Article  CAS  PubMed  Google Scholar 

  19. Murata T, Sato T, Kamoda T, Moriyama H, Kumazawa Y, Hanada N (2014) Differential susceptibility to hydrogen sulfide-induced apoptosis between PHLDA1-overexpressing oral cancer cell lines and oral keratinocytes: role of PHLDA1 as an apoptosis suppressor. Exp Cell Res 320(2):247–257. https://doi.org/10.1016/j.yexcr.2013.10.023

    Article  CAS  PubMed  Google Scholar 

  20. Wang R, Zhang L, Yin D, Mufson RA, Shi Y (1998) Protein kinase C regulates Fas (CD95/APO-1) expression. J Immunol 161(5):2201–2207

    CAS  PubMed  Google Scholar 

  21. Carlisle RE, Heffernan A, Brimble E, Liu L, Jerome D, Collins CA, Mohammed-Ali Z, Margetts PJ, Austin RC, Dickhout JG (2012) TDAG51 mediates epithelial-to-mesenchymal transition in human proximal tubular epithelium. Am J Physiol Renal Physiol 303(3):F467-481. https://doi.org/10.1152/ajprenal.00481.2011

    Article  CAS  PubMed  Google Scholar 

  22. Chen Y, Takikawa M, Tsutsumi S, Yamaguchi Y, Okabe A, Shimada M, Kawase T, Sada A, Ezawa I, Takano Y, Nagata K, Suzuki Y, Semba K, Aburatani H, Ohki R (2018) PHLDA1, another PHLDA family protein that inhibits Akt. Cancer Sci 109(11):3532–3542. https://doi.org/10.1111/cas.13796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Avruch J, Khokhlatchev A, Kyriakis JM, Luo Z, Tzivion G, Vavvas D, Zhang XF (2001) Ras activation of the Raf kinase: tyrosine kinase recruitment of the MAP kinase cascade. Recent Prog Horm Res 56:127–155. https://doi.org/10.1210/rp.56.1.127

    Article  CAS  PubMed  Google Scholar 

  24. Bunda S, Heir P, Srikumar T, Cook JD, Burrell K, Kano Y, Lee JE, Zadeh G, Raught B, Ohh M (2014) Src promotes GTPase activity of Ras via tyrosine 32 phosphorylation. Proc Natl Acad Sci USA 111(36):E3785-3794. https://doi.org/10.1073/pnas.1406559111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Bunda S, Burrell K, Heir P, Zeng L, Alamsahebpour A, Kano Y, Raught B, Zhang ZY, Zadeh G, Ohh M (2015) Inhibition of SHP2-mediated dephosphorylation of Ras suppresses oncogenesis. Nat Commun 6:8859. https://doi.org/10.1038/ncomms9859

    Article  CAS  PubMed  Google Scholar 

  26. Simanshu DK, Nissley DV, McCormick F (2017) RAS proteins and their regulators in human disease. Cell 170(1):17–33. https://doi.org/10.1016/j.cell.2017.06.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Iversen L, Tu HL, Lin WC, Christensen SM, Abel SM, Iwig J, Wu HJ, Gureasko J, Rhodes C, Petit RS, Hansen SD, Thill P, Yu CH, Stamou D, Chakraborty AK, Kuriyan J, Groves JT (2014) Molecular kinetics. Ras activation by SOS: allosteric regulation by altered fluctuation dynamics. Science 345(6192):50–54. https://doi.org/10.1126/science.1250373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hai J, Liu S, Bufe L, Do K, Chen T, Wang X, Ng C, Li S, Tsao MS, Shapiro GI, Wong KK (2017) Synergy of WEE1 and mTOR inhibition in mutant KRAS-driven lung cancers. Clin Cancer Res 23(22):6993–7005. https://doi.org/10.1158/1078-0432.CCR-17-1098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Saturno G, Lopes F, Niculescu-Duvaz I, Niculescu-Duvaz D, Zambon A, Davies L, Johnson L, Preece N, Lee R, Viros A, Holovanchuk D, Pedersen M, McLeary R, Lorigan P, Dhomen N, Fisher C, Banerji U, Dean E, Krebs MG, Gore M, Larkin J, Marais R, Springer C (2021) The paradox-breaking panRAF plus SRC family kinase inhibitor, CCT3833, is effective in mutant KRAS-driven cancers. Ann Oncol 32(2):269–278. https://doi.org/10.1016/j.annonc.2020.10.483

    Article  CAS  PubMed  Google Scholar 

  30. Johnson EO, Chang KH, de Pablo Y, Ghosh S, Mehta R, Badve S, Shah K (2011) PHLDA1 is a crucial negative regulator and effector of Aurora A kinase in breast cancer. J Cell Sci 124(Pt 16):2711–2722. https://doi.org/10.1242/jcs.084970

    Article  CAS  PubMed  Google Scholar 

  31. Li G, Wang X, Hibshoosh H, Jin C, Halmos B (2014) Modulation of ErbB2 blockade in ErbB2-positive cancers: the role of ErbB2 Mutations and PHLDA1. PLoS ONE 9(9):e106349. https://doi.org/10.1371/journal.pone.0106349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Coutinho-Camillo CM, Lourenco SV, Nonogaki S, Vartanian JG, Nagai MA, Kowalski LP, Soares FA (2013) Expression of PAR-4 and PHLDA1 is prognostic for overall and disease-free survival in oral squamous cell carcinomas. Virchows Arch 463(1):31–39. https://doi.org/10.1007/s00428-013-1438-9

    Article  CAS  PubMed  Google Scholar 

  33. Chiu ST, Hsieh FJ, Chen SW, Chen CL, Shu HF, Li H (2005) Clinicopathologic correlation of up-regulated genes identified using cDNA microarray and real-time reverse transcription-PCR in human colorectal cancer. Cancer Epidemiol Biomarkers Prev 14(2):437–443. https://doi.org/10.1158/1055-9965.EPI-04-0396

    Article  CAS  PubMed  Google Scholar 

  34. Ren L, Mendoza A, Zhu J, Briggs JW, Halsey C, Hong ES, Burkett SS, Morrow J, Lizardo MM, Osborne T, Li SQ, Luu HH, Meltzer P, Khanna C (2015) Characterization of the metastatic phenotype of a panel of established osteosarcoma cells. Oncotarget 6(30):29469–29481. https://doi.org/10.18632/oncotarget.5177

    Article  PubMed  PubMed Central  Google Scholar 

  35. Liu L, Shi Y, Shi J, Wang H, Sheng Y, Jiang Q, Chen H, Li X, Dong J (2019) The long non-coding RNA SNHG1 promotes glioma progression by competitively binding to miR-194 to regulate PHLDA1 expression. Cell Death Dis 10(6):463. https://doi.org/10.1038/s41419-019-1698-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Buday L, Vas V (2020) Novel regulation of Ras proteins by direct tyrosine phosphorylation and dephosphorylation. Cancer Metastasis Rev 39(4):1067–1073. https://doi.org/10.1007/s10555-020-09918-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Buday L, Downward J (2008) Many faces of Ras activation. Biochim Biophys Acta 1786(2):178–187. https://doi.org/10.1016/j.bbcan.2008.05.001

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was supported by the Natural Science Foundation of Henan (162300410336); National Natural Science Foundation of China (Nos. 82073075).

Author information

Authors and Affiliations

Authors

Contributions

ZD and KL designed and supervised the experiments; JW prepared the manuscript; JW, NY, YH, MW, LY, performed experiments; JW, ML, SP and XL performed data analysis and interpretation.

Corresponding authors

Correspondence to Kangdong Liu or Zigang Dong.

Ethics declarations

Conflict of interest

No potential conflicts of interest were disclosed.

Ethics approval

Ethics approval was obtained by the Ethics Review Commission of Zhengzhou University (CUHCI2020001).

Consent to participate

As no human subjects were involved, consent to participate is not relevant to this manuscript submission.

Consent for publication

All authors have given consent for publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Yao, N., Hu, Y. et al. PHLDA1 promotes glioblastoma cell growth via sustaining the activation state of Ras. Cell. Mol. Life Sci. 79, 520 (2022). https://doi.org/10.1007/s00018-022-04538-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00018-022-04538-1

Keywords

Navigation