Skip to main content
Log in

Molecular landscape of BoNT/B bound to a membrane-inserted synaptotagmin/ganglioside complex

  • Original Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Botulinum neurotoxin serotype B (BoNT/B) uses two separate protein and polysialoglycolipid-binding pockets to interact with synaptotagmin 1/2 and gangliosides. However, an integrated model of BoNT/B bound to its neuronal receptors in a native membrane topology is still lacking. Using a panel of in silico and experimental approaches, we present here a new model for BoNT/B binding to neuronal membranes, in which the toxin binds to a preassembled synaptotagmin-ganglioside GT1b complex and a free ganglioside allowing a lipid-binding loop of BoNT/B to interact with the glycone part of the synaptotagmin-associated GT1b. Furthermore, our data provide molecular support for the decrease in BoNT/B sensitivity in Felidae that harbor the natural variant synaptotagmin2-N59Q. These results reveal multiple interactions of BoNT/B with gangliosides and support a novel paradigm in which a toxin recognizes a protein/ganglioside complex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Coordinates of structural Details of BoNT/B/synaptotagmin 1 & 2/gangliosides complexes are available upon request.

Abbreviations

BoNTs:

Botulinum neurotoxins

HC:

Heavy chain

GBS1:

Ganglioside-binding site

SYT:

Synaptotagmin

LBL:

Lipid-binding loop

JMD:

Juxtamembrane domain

TMD:

Transmembrane domain

DMPC:

1,2-Dimyristoyl-sn-glycero-3-phosphocholine

DPPC:

1,2-Dipalmitoylphosphatidylcholine

IR:

Immunoreactivity

ROI:

Regions of interest

RMS:

Root-mean-square

Glc:

Glucose

Gal:

Galactose

Gal-Nac:

N-acetylgalactosamine

Sia:

Sialic acid

Cer:

Ceramide

SPR:

Surface Plasmon Resonance

References

  1. Poulain B, Lemichez E, Popoff MR (2020) Neuronal selectivity of botulinum neurotoxins. Toxicon 178:20–32. https://doi.org/10.1016/j.toxicon.2020.02.006

    Article  CAS  PubMed  Google Scholar 

  2. Dong M, Masuyer G, Stenmark P (2019) Botulinum and tetanus neurotoxins. Annu Rev Biochem 88:811–837. https://doi.org/10.1146/annurev-biochem-013118-111654

    Article  CAS  PubMed  Google Scholar 

  3. Davies JR, Liu SM, Acharya KR (2018) Variations in the botulinum neurotoxin binding domain and the potential for novel therapeutics. Toxins (Basel). https://doi.org/10.3390/toxins10100421

    Article  Google Scholar 

  4. Pellett S, Yaksh TL, Ramachandran R (2015) Current status and future directions of botulinum neurotoxins for targeting pain processing. Toxins (Basel) 7:4519–4563. https://doi.org/10.3390/toxins7114519

    Article  CAS  Google Scholar 

  5. Pirazzini M, Rossetto O, Eleopra R, Montecucco C (2017) Botulinum neurotoxins: biology, pharmacology, and toxicology. Pharmacol Rev 69:200–235. https://doi.org/10.1124/pr.116.012658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Elliott M et al (2019) Engineered botulinum neurotoxin B with improved binding to human receptors has enhanced efficacy in preclinical models. Sci Adv 5:eaau7196. https://doi.org/10.1126/sciadv.aau7196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Schnaar RL (2016) Gangliosides of the vertebrate nervous system. J Mol Biol 428:3325–3336. https://doi.org/10.1016/j.jmb.2016.05.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Rummel A (2013) Double receptor anchorage of botulinum neurotoxins accounts for their exquisite neurospecificity. Curr Top Microbiol Immunol 364:61–90. https://doi.org/10.1007/978-3-642-33570-9_4

    Article  CAS  PubMed  Google Scholar 

  9. Sipione S, Monyror J, Galleguillos D, Steinberg N, Kadam V (2020) Gangliosides in the brain: physiology: pathophysiology and therapeutic applications. Front Neurosci 14:572965. https://doi.org/10.3389/fnins.2020.572965

    Article  PubMed  PubMed Central  Google Scholar 

  10. Berntsson RP, Peng L, Dong M, Stenmark P (2013) Structure of dual receptor binding to botulinum neurotoxin B. Nat Commun 4:2058. https://doi.org/10.1038/ncomms3058

    Article  CAS  PubMed  Google Scholar 

  11. Zuverink M, Barbieri JT (2018) Protein toxins that utilize gangliosides as host receptors. Prog Mol Biol Transl Sci 156:325–354. https://doi.org/10.1016/bs.pmbts.2017.11.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Fantini J, Yahi N (2015) Brain lipids in synaptic function and neurological disease: clues to innovative therapeutic strategies for brain disorders. Elsevier Academic Press, New-York, pp 398

    Google Scholar 

  13. Fantini J, Chahinian H, Yahi N (2020) Synergistic antiviral effect of hydroxychloroquine and azithromycin in combination against SARS-CoV-2: What molecular dynamics studies of virus-host interactions reveal. Int J Antimicrob Agents 56:106020. https://doi.org/10.1016/j.ijantimicag.2020.106020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Strotmeier J et al (2010) Botulinum neurotoxin serotype D attacks neurons via two carbohydrate-binding sites in a ganglioside-dependent manner. Biochem J 431:207–216. https://doi.org/10.1042/BJ20101042

    Article  CAS  PubMed  Google Scholar 

  15. Karalewitz AP, Fu Z, Baldwin MR, Kim JJ, Barbieri JT (2012) Botulinum neurotoxin serotype C associates with dual ganglioside receptors to facilitate cell entry. J Biol Chem 287:40806–40816. https://doi.org/10.1074/jbc.M112.404244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Strotmeier J et al (2011) The biological activity of botulinum neurotoxin type C is dependent upon novel types of ganglioside binding sites. Mol Microbiol 81:143–156. https://doi.org/10.1111/j.1365-2958.2011.07682.x

    Article  CAS  PubMed  Google Scholar 

  17. Yin L et al (2020) Characterization of a membrane binding loop leads to engineering botulinum neurotoxin B with improved therapeutic efficacy. PLoS Biol 18:e3000618. https://doi.org/10.1371/journal.pbio.3000618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Stern D et al (2018) A lipid-binding loop of botulinum neurotoxin serotypes B, DC and G is an essential feature to confer their exquisite potency. PLoS Pathog 14:e1007048. https://doi.org/10.1371/journal.ppat.1007048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Angaut-Petit D et al (1995) Mouse motor nerve terminal immunoreactivity to synaptotagmin II during sustained quantal transmitter release. Brain Res 681:213–217. https://doi.org/10.1016/0006-8993(95)00294-z

    Article  CAS  PubMed  Google Scholar 

  20. Thiele C, Hannah MJ, Fahrenholz F, Huttner WB (2000) Cholesterol binds to synaptophysin and is required for biogenesis of synaptic vesicles. Nat Cell Biol 2:42–49. https://doi.org/10.1038/71366

    Article  CAS  PubMed  Google Scholar 

  21. Park Y et al (2015) Synaptotagmin-1 binds to PIP(2)-containing membrane but not to SNAREs at physiological ionic strength. Nat Struct Mol Biol 22:815–823. https://doi.org/10.1038/nsmb.3097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Yao J, Kwon SE, Gaffaney JD, Dunning FM, Chapman ER (2011) Uncoupling the roles of synaptotagmin I during endo- and exocytosis of synaptic vesicles. Nat Neurosci 15:243–249. https://doi.org/10.1038/nn.3013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Jin R, Rummel A, Binz T, Brunger AT (2006) Botulinum neurotoxin B recognizes its protein receptor with high affinity and specificity. Nature 444:1092–1095. https://doi.org/10.1038/nature05387

    Article  CAS  PubMed  Google Scholar 

  24. Chai Q et al (2006) Structural basis of cell surface receptor recognition by botulinum neurotoxin B. Nature 444:1096–1100. https://doi.org/10.1038/nature05411

    Article  CAS  PubMed  Google Scholar 

  25. Desplantes R et al (2017) Affinity biosensors using recombinant native membrane proteins displayed on exosomes: application to botulinum neurotoxin B receptor. Sci Rep 7:1032. https://doi.org/10.1038/s41598-017-01198-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kozaki S, Kamata Y, Watarai S, Nishiki T, Mochida S (1998) Ganglioside GT1b as a complementary receptor component for Clostridium botulinum neurotoxins. Microb Pathog 25:91–99

    Article  CAS  Google Scholar 

  27. Flores A et al (2019) Gangliosides interact with synaptotagmin to form the high-affinity receptor complex for botulinum neurotoxin B. Proc Natl Acad Sci USA 116:18098–18108. https://doi.org/10.1073/pnas.1908051116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Dong M et al (2003) Synaptotagmins I and II mediate entry of botulinum neurotoxin B into cells. J Cell Biol 162:1293–1303. https://doi.org/10.1083/jcb.200305098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Rummel A et al (2007) Identification of the protein receptor binding site of botulinum neurotoxins B and G proves the double-receptor concept. Proc Natl Acad Sci U S A 104:359–364. https://doi.org/10.1073/pnas.0609713104

    Article  CAS  PubMed  Google Scholar 

  30. Nishiki T et al (1996) The high-affinity binding of Clostridium botulinum type B neurotoxin to synaptotagmin II associated with gangliosides GT1b/GD1a. FEBS Lett 378:253–257

    Article  CAS  Google Scholar 

  31. Fantini J, Garmy N, Yahi N (2006) Prediction of glycolipid-binding domains from the amino acid sequence of lipid raft-associated proteins: application to HpaA, a protein involved in the adhesion of Helicobacter pylori to gastrointestinal cells. Biochemistry 45:10957–10962. https://doi.org/10.1021/bi060762s

    Article  CAS  PubMed  Google Scholar 

  32. Di Scala C et al (2014) Mechanism of cholesterol-assisted oligomeric channel formation by a short Alzheimer beta-amyloid peptide. J Neurochem 128:186–195. https://doi.org/10.1111/jnc.12390

    Article  CAS  PubMed  Google Scholar 

  33. Fantini J, Yahi N, Azzaz F, Chahinian H (2021) Structural dynamics of SARS-CoV-2 variants: a health monitoring strategy for anticipating COVID-19 outbreaks. J Infect 83:197–206. https://doi.org/10.1016/j.jinf.2021.06.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Pettersen EF et al (2004) UCSF Chimera–a visualization system for exploratory research and analysis. J Comput Chem 25:1605–1612. https://doi.org/10.1002/jcc.20084

    Article  CAS  PubMed  Google Scholar 

  35. Ulrich-Bott B, Wiegandt H (1984) Micellar properties of glycosphingolipids in aqueous media. J Lipid Res 25:1233–1245

    Article  CAS  Google Scholar 

  36. Fantini J, Garmy N, Mahfoud R, Yahi N (2002) Lipid rafts: structure, function and role in HIV, Alzheimer’s and prion diseases. Expert Rev Mol Med 4:1–22. https://doi.org/10.1017/S1462399402005392

    Article  CAS  PubMed  Google Scholar 

  37. Chen C, Baldwin MR, Barbieri JT (2008) Molecular basis for tetanus toxin coreceptor interactions. Biochemistry 47:7179–7186. https://doi.org/10.1021/bi800640y

    Article  CAS  PubMed  Google Scholar 

  38. Montecucco C, Rasotto MB (2015) On botulinum neurotoxin variability. MBio. https://doi.org/10.1128/mBio.02131-14

    Article  PubMed  PubMed Central  Google Scholar 

  39. Davies JR, Masuyer G, Stenmark P (2020) Structural and biochemical characterization of botulinum neurotoxin subtype B2 binding to its receptors. Toxins (Basel). https://doi.org/10.3390/toxins12090603

    Article  Google Scholar 

  40. Dong M, Tepp WH, Liu H, Johnson EA, Chapman ER (2007) Mechanism of botulinum neurotoxin B and G entry into hippocampal neurons. J Cell Biol 179:1511–1522. https://doi.org/10.1083/jcb.200707184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wild E et al (2016) In vitro potency determination of botulinum neurotoxin B based on its receptor-binding and proteolytic characteristics. Toxicol In Vitro 34:97–104. https://doi.org/10.1016/j.tiv.2016.03.011

    Article  CAS  PubMed  Google Scholar 

  42. Fantini J, Di Scala C, Baier CJ, Barrantes FJ (2016) Molecular mechanisms of protein-cholesterol interactions in plasma membranes: functional distinction between topological (tilted) and consensus (CARC/CRAC) domains. Chem Phys Lipids 199:52–60. https://doi.org/10.1016/j.chemphyslip.2016.02.009

    Article  CAS  PubMed  Google Scholar 

  43. Stenmark P, Dong M, Dupuy J, Chapman ER, Stevens RC (2010) Crystal structure of the botulinum neurotoxin type G binding domain: insight into cell surface binding. J Mol Biol 397:1287–1297. https://doi.org/10.1016/j.jmb.2010.02.041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Emsley P et al (2000) The structures of the H(C) fragment of tetanus toxin with carbohydrate subunit complexes provide insight into ganglioside binding. J Biol Chem 275:8889–8894. https://doi.org/10.1074/jbc.275.12.8889

    Article  CAS  PubMed  Google Scholar 

  45. Swaminathan S, Eswaramoorthy S (2000) Structural analysis of the catalytic and binding sites of Clostridium botulinum neurotoxin B. Nat Struct Biol 7:693–699. https://doi.org/10.1038/78005

    Article  CAS  PubMed  Google Scholar 

  46. Karalewitz AP et al (2010) Identification of a unique ganglioside binding loop within botulinum neurotoxins C and D-SA. Biochemistry 49:8117–8126. https://doi.org/10.1021/bi100865f

    Article  CAS  PubMed  Google Scholar 

  47. Ortiz NE, Smith GR (1994) The production of Clostridium botulinum type A, B and D toxin in rotting carcasses. Epidemiol Infect 113:335–343. https://doi.org/10.1017/s0950268800051761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Lam KH, Yao G, Jin R (2015) Diverse binding modes, same goal: the receptor recognition mechanism of botulinum neurotoxin. Prog Biophys Mol Biol 117:225–231. https://doi.org/10.1016/j.pbiomolbio.2015.02.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Montecucco C (1986) How do tetanus and botulinum toxins bind to neuronal membranes? Trends Biochem Sci 11:314–317. https://doi.org/10.1016/0968-0004(86)90282-3

    Article  CAS  Google Scholar 

  50. Fogolari F, Tosatto SC, Muraro L, Montecucco C (2009) Electric dipole reorientation in the interaction of botulinum neurotoxins with neuronal membranes. FEBS Lett 583:2321–2325. https://doi.org/10.1016/j.febslet.2009.06.046

    Article  CAS  PubMed  Google Scholar 

  51. Sun S et al (2011) Receptor binding enables botulinum neurotoxin B to sense low pH for translocation channel assembly. Cell Host Microbe 10:237–247. https://doi.org/10.1016/j.chom.2011.06.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kammerer RA, Benoit RM (2014) Botulinum neurotoxins: new questions arising from structural biology. Trends Biochem Sci 39:517–526. https://doi.org/10.1016/j.tibs.2014.08.009

    Article  CAS  PubMed  Google Scholar 

  53. Willig KI, Rizzoli SO, Westphal V, Jahn R, Hell SW (2006) STED microscopy reveals that synaptotagmin remains clustered after synaptic vesicle exocytosis. Nature 440:935–939. https://doi.org/10.1038/nature04592

    Article  CAS  PubMed  Google Scholar 

  54. van den Bogaart G et al (2011) Membrane protein sequestering by ionic protein-lipid interactions. Nature 479:552–555. https://doi.org/10.1038/nature10545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Rasetti-Escargueil C, Popoff MR (2020) Engineering botulinum neurotoxins for enhanced therapeutic applications and vaccine development. Toxins (Basel). https://doi.org/10.3390/toxins13010001

    Article  Google Scholar 

  56. Fonfria E, Elliott M, Beard M, Chaddock JA, Krupp J (2018) Engineering botulinum toxins to improve and expand targeting and SNARE cleavage activity. Toxins (Basel). https://doi.org/10.3390/toxins10070278

    Article  Google Scholar 

Download references

Acknowledgements

We thank Raymond Miquelis for constructive discussions.

Funding

Agence Nationale de la Recherche (ANR) (grant ANR-17-CE16-0022) for the postdoctoral financial support of JRF Ministère des Armées (AID) and Aix-Marseille Université AMU for the PhD thesis of FO.

Author information

Authors and Affiliations

Authors

Contributions

CL, OEF and MS conceived the study. CL and OEF supervised the entire project, the experimental design, data interpretation and manuscript preparation. CL and OEF analyzed and interpreted the data. JRF and CL performed immunofluorescence experiments, JRF acquired the corresponding images and performed treatment and analysis. FA performed molecular modelling and prepared with JRF molecular modelling figures. CL and GF performed SPR experiments. JF performed Langmuir monolayer experiments. FY and MS performed expression plasmids preparation and preliminary expression tests. CL performed SPR experiments. C.L. wrote the original draft of the manuscript. CL, FA, JF, OEF and JRF prepared the figures. MRP was involved in discussion and data analysis. All authors edited and reviewed the manuscript.

Corresponding authors

Correspondence to Christian Lévêque or Oussama El Far.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

Not applicable.

Consent to participate

All authors approved submission.

Consent to publish

All authors approved publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3125 kb)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramirez-Franco, J., Azzaz, F., Sangiardi, M. et al. Molecular landscape of BoNT/B bound to a membrane-inserted synaptotagmin/ganglioside complex. Cell. Mol. Life Sci. 79, 496 (2022). https://doi.org/10.1007/s00018-022-04527-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00018-022-04527-4

Keywords

Navigation