Skip to main content

Advertisement

Log in

Emerging role of tumor suppressor p53 in acute and chronic kidney diseases

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

p53 is a major regulator of cell cycle arrest, apoptosis, and senescence. While involvement of p53 in tumorigenesis is well established, recent studies implicate p53 in the initiation and progression of several renal diseases, which is the focus of this review. Ischemic-, aristolochic acid (AA) -, diabetic-, HIV-associated-, obstructive- and podocyte-induced nephropathies are accompanied by activation and/or elevated expression of p53. Studies utilizing chemical or renal-specific inhibition of p53 in mice confirm the pathogenic role of this transcription factor in acute kidney injury and chronic kidney disease. TGF-β1, NOX, ATM/ATR kinases, Cyclin G, HIPK, MDM2 and certain micro-RNAs are important determinants of renal p53 function in response to trauma. AA, cisplatin or TGF-β1–mediated ROS generation via NOXs promotes p53 phosphorylation and subsequent tubular dysfunction. p53-SMAD3 transcriptional cooperation downstream of TGF-β1 orchestrates induction of fibrotic factors, extracellular matrix accumulation and pathogenic renal cell communication. TGF-β1-induced micro-RNAs (such as mir-192) could facilitate p53 activation, leading to renal hypertrophy and matrix expansion in response to diabetic insults while AA-mediated mir-192 induction regulates p53 dependent epithelial G2/M arrest. The widespread involvement of p53 in tubular maladaptive repair, interstitial fibrosis, and podocyte injury indicate that p53 clinical targeting may hold promise as a novel therapeutic strategy for halting progression of certain acute and chronic renal diseases, which affect hundreds of million people worldwide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

Enquiries about data availability should be directed to the authors.

References

  1. Wynn TA (2007) Common and unique mechanisms regulate fibrosis in various fibroproliferative diseases. J CIin Invest 117:524–529

    CAS  Google Scholar 

  2. Couser WG, Remuzzi G, Mendis S, Tonelli M (2011) The contribution of chronic kidney disease to the global burden of major noncommunicable diseases. Kidney Int 12:1258–1270

    Google Scholar 

  3. Jha V, Garcia-Garcia G, Iseki K, Li Z, Naicker S, Plattner B, Saran R, Wang AY, Yang CW (2013) Chronic kidney disease: global dimension and perspectives. Lancet 382(9888):260–272

    PubMed  Google Scholar 

  4. Perico N, Remuzzi G (2012) Chronic kidney disease: a research and public health priority. Nephrol Dial Transplant 27(Supple 3):iii19–iii26

    PubMed  Google Scholar 

  5. Friedman SL, Sheppard D, Duffield JS, Violette S (2013) Therapy for fibrotic diseases: nearing the starting line. Sci Transl Med 5(167):167sr

    Google Scholar 

  6. Duffield JS, Lupher M, Thannickal VJ, Wynn TA (2013) Host responses in tissue repair and fibrosis. Annu Rev Pathol 8:241–276

    CAS  PubMed  Google Scholar 

  7. Strutz F, Neilson EG (2003) New insights into mechanisms of fibrosis in immune renal injury. Springer Semin Immunopath 24:459–476

    CAS  Google Scholar 

  8. Eddy AA (2005) Progression of chronic kidney disease. Adv Chronic Kidney Dis 12:353–365

    PubMed  Google Scholar 

  9. Boor P, Ostendorf T, Floege J (2010) Renal fibrosis: novel insights into mechanisms and therapeutic targets. Nat Rev Nephrol 6(11):643–656

    PubMed  Google Scholar 

  10. Ferenbach DA, Bonventre JV (2015) Mechanisms of maladaptive repair after AKI leading to accelerated kidney ageing and CKD. Nat Rev Nephrol 11:264–276

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Kramann R, DiRocco DP, Humphreys BD (2013) Understanding the origin, activation and regulation of matrix-producing myofibroblasts for treatment of fibrotic disease. J Pathol 231:273–289

    CAS  PubMed  Google Scholar 

  12. Zeisberg M, Neilson EG (2010) Mechanisms of tubulointerstitial fibrosis. J Am Soc Nephrol 21:1819–1834

    CAS  PubMed  Google Scholar 

  13. Yang L, Besschetnova TY, Brooks CR, Shah JV, Bonventre JV (2010) Epithelial cell cycle arrest in G2/M mediates kidney fibrosis after injury. Nat Med 16:535–543

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Yang L, Humphreys BD, Bonventre JV (2011) Pathophysiology of acute kidney injury to chronic kidney disease: maladaptive repair. Contrib Nephrol 174:149–155

    PubMed  Google Scholar 

  15. Canaud G, Bonventre JV (2015) Cell cycle arrest and the evolution of chronic kidney disease from acute kidney injury. Nephrol Dial Transplant 30:575–583

    CAS  PubMed  Google Scholar 

  16. Loeffler I, Wolf G (2014) Transforming growth factor-β and the progression of renal disease. Nephrol Dial Transplant 29(Suppl 1):i37–i45

    CAS  PubMed  Google Scholar 

  17. Pohlers D, Brenmoehl J, Löffler I, Müller CK, Leipner C, Schultze-Mosgau S, Stallmach A, Kinne RW, Wolf G (2009) TGF-beta and fibrosis in different organs—molecular pathway imprints. Biochim Biophys Acta 1792:746–756

    CAS  PubMed  Google Scholar 

  18. Bottinger EP, Bitzer M (2002) TGF-β signaling in renal disease. J Am Soc Nephrol 13:2600–2610

    PubMed  Google Scholar 

  19. Sato M, Muragaki Y, Saika S, Roberts AB, Ooshima A (2003) Targeted disruption of TGF-β1/Smad3 signaling protects against renal tubulointerstitial fibrosis induced by unilateral ureteral obstruction. J Clin Invest 112:1486–1494

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Samarakoon R, Overstreet JM, Higgins SP, Higgins PJ (2012) TGF-β1→ SMAD/p53/USF2 →PAI-1 transcriptional axis in UUO-induced renal fibrosis. Cell Tissue Res 347:117–128

    CAS  PubMed  Google Scholar 

  21. Samarakoon R, Overstreet JM, Higgins PJ (2012) TGF-β1 signaling in tissue fibrosis; redox controls, target genes and therapeutic opportunities. Cell Signal 25:264–268

    PubMed  PubMed Central  Google Scholar 

  22. Massagué J (2012) TGFβ signalling in context. Nat Rev Mol Cell Biol 13:616–630

    PubMed  PubMed Central  Google Scholar 

  23. Meng XM, Nikolic-Paterson DJ, Lan HY (2016) TGF-β: the master regulator of fibrosis. Nat Rev Nephrol 12:325–336

    CAS  PubMed  Google Scholar 

  24. Derynck R, Zhang YE (2003) Smad-dependent and Smad-independent pathways in TGF-beta family signalling. Nature 425:577–584

    CAS  PubMed  Google Scholar 

  25. Samarakoon R, Higgins PJ (2008) Integration of non-SMAD and SMAD signaling in TGF-β1-induced plasminogen activator inhibitor type-1 gene expression in vascular smooth muscle cells. Thromb Haemost 100:976–983

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Higgins CE, Tang J, Higgins SP, Gifford CC, Mian BM, Jones DM, Zhang W, Costello A, Conti DJ, Samarakoon R, Higgins PJ (2021) The genomic response to TGF-β1 dictates failed repair and progression of fibrotic disease in the obstructed kidney. Front Cell Dev Biol 2(9):678524. https://doi.org/10.3389/fcell.2021.678524

    Article  Google Scholar 

  27. Overstreet JM, Samarakoon R, Higgins PJ (2014) Redox control of p53 in the transcriptional regulation of TGF-β target genes through SMAD cooperativity. Cell Signal 26:1427–1436

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Overstreet JM, Samarakoon R, Cardona-Grau D, Goldschmeding R, Higgins PJ (2015) Tumor suppressor ataxia telangiectasia mutated functions downstream of TGF-β1 in orchestrating profibrotic responses. FASEB J 29:1258–1268

    CAS  PubMed  Google Scholar 

  29. Vousden KH, Prives C (2009) Blinded by the light: the growing complexity of p53. Cell 137:413–431

    CAS  PubMed  Google Scholar 

  30. Riley T, Sontag E, Chen P, Levine A (2008) Transcriptional control of human p53-regulated genes. Nat Rev Mol Cell Biol 9:402–412

    CAS  PubMed  Google Scholar 

  31. Meek DW, Anderson CW (2009) Posttranslational modification of p53: cooperative integrators of function. Cold Spring Harb Perspect Biol 1:a000950

    PubMed  PubMed Central  Google Scholar 

  32. Lavin MF (2008) Ataxia-telangiectasia: from a rare disorder to a paradigm for cell signalling and cancer. Nat Rev Mol Cell Biol 10:759–769

    Google Scholar 

  33. Guo Z, Kozlov S, Lavin MF, Person MD, Paull TT (2010) ATM activation by oxidative stress. Science 330:517–521

    CAS  PubMed  Google Scholar 

  34. Paull TT (2015) Mechanisms of ATM activation. Annu Rev Biochem 84:711–738

    CAS  PubMed  Google Scholar 

  35. Molitoris BA, Dagher PC, Sandoval RM, Campos SB, Ashush H, Fridman E, Brafman A, Faerman A, Atkinson SJ, Thompson JD, Kalinski H, Skaliter R, Erlich S, Feinstein E (2009) siRNA targeted to p53 attenuates ischemic and cisplatin-induced acute kidney injury. J Am Soc Nephrol 20:1754–1764

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Jiang M, Yi X, Hsu S, Wang CY, Dong Z (2004) Role of p53 in cisplatin-induced tubular cell apoptosis: dependence on p53 transcriptional activity. Am J Physiol Renal Physiol 287:F1140–F1147

    CAS  PubMed  Google Scholar 

  37. Li C, Xie N, Li Y, Liu C, Hou FF, Wang J (2019) N-acetylcysteine ameliorates cisplatin-induced renal senescence and renal interstitial fibrosis through sirtuin1 activation and p53 deacetylation. Free Radic Biol Med 130:512–527

    CAS  PubMed  Google Scholar 

  38. Zhou L, Fu P, Huang XR, Liu F, Lai KN, Lan HY (2010) Activation of p53 promotes renal injury in acute aristolochic acid nephropathy. J Am Soc Nephrol 21:31–41

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Ying Y, Kim J, Westphal SN, Long KE, Padanilam BJ (2014) Targeted deletion of p53 in the proximal tubule prevents ischemic renal injury. J Am Soc Nephrol 25:2707–2716

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Zhang D, Liu Y, Wei Q, Huo Y, Li K, Liu F, Dong Z (2014) Tubular p53 regulates multiple genes to mediate AKI. J Am Soc Nephrol 25:2278–2289

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Yang R, Xu X, Li H, Chen J, Xiang X, Dong Z, Zhang D (2017) p53 induces miR199a-3p to suppress SOCS7 for STAT3 activation and renal fibrosis in UUO. Sci Rep 7:43409. https://doi.org/10.1038/srep43409

    Article  PubMed  PubMed Central  Google Scholar 

  42. Qi R, Wang J, Jiang Y, Qiu Y, Xu M, Rong R, Zhu T (2021) Snai1-induced partial epithelial-mesenchymal transition orchestrates p53–p21-mediated G2/M arrest in the progression of renal fibrosis via NF-κB-mediated inflammation. Cell Death Dis 12(1):44. https://doi.org/10.1038/s41419-020-03322-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Brezniceanu ML, Liu F, Wei CC, Chénier I, Godin N, Zhang SL, Filep JG, Ingelfinger JR, Chan JS (2008) Attenuation of interstitial fibrosis and tubular apoptosis in db/db transgenic mice overexpressing catalase in renal proximal tubular cells. Diabetes 57:451–459

    CAS  PubMed  Google Scholar 

  44. Brezniceanu ML, Liu F, Wei CC, Tran S, Sachetelli S, Zhang SL, Guo DF, Filep JG, Ingelfinger JR, Chan JS (2007) Catalase overexpression attenuates angiotensinogen expression and apoptosis in diabetic mice. Kidney Int 71:912–923

    CAS  PubMed  Google Scholar 

  45. Peng J, Li X, Zhang D, Chen JK, Su Y, Smith SB, Dong Z (2015) Hyperglycemia, p53, and mitochondrial pathway of apoptosis are involved in the susceptibility of diabetic models to ischemic acute kidney injury. Kidney Int 87:137–150

    CAS  PubMed  Google Scholar 

  46. Sutton TA, Hato T, Mai E, Yoshimoto M, Kuehl S, Anderson M, Mang H, Plotkin Z, Chan RJ, Dagher PC (2013) p53 is renoprotective after ischemic kidney injury by reducing inflammation. J Am Soc Nephrol 24:113–124

    CAS  PubMed  Google Scholar 

  47. Gifford CC, Tang J, Costello A, Khakoo NS, Nguyen TQ, Goldschmeding R, Higgins PJ, Samarakoon R (2021) Negative regulators of TGF-β1 signaling in renal fibrosis; pathological mechanisms and novel therapeutic opportunities. Clin Sci (Lond) 135:275–303

    CAS  Google Scholar 

  48. Samarakoon R, Dobberfuhl AD, Cooley C, Overstreet JM, Patel S, Goldschmeding R, Meldrum KK, Higgins PJ (2013) Induction of renal fibrotic genes by TGF-β1 requires EGFR activation, p53 and reactive oxygen species. Cell Signal 25:2198–2209

    CAS  PubMed  Google Scholar 

  49. Anorga S, Overstreet JM, Falke LL, Tang J, Goldschmeding RG, Higgins PJ, Samarakoon R (2018) Deregulation of Hippo-TAZ pathway during renal injury confers a fibrotic maladaptive phenotype. FASEB J 32:2644–2657

    PubMed  PubMed Central  Google Scholar 

  50. Patel S, Tang J, Overstreet JM, Anorga S, Lian F, Arnouk A, Goldschmeding R, Higgins PJ, Samarakoon R (2019) Rac-GTPase promotes fibrotic TGF-β1 signaling and chronic kidney disease via EGFR, p53, and Hippo/YAP/TAZ pathways. FASEB J 33:9797–9810

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Cordenonsi M, Dupont S, Maretto S, Insinga A, Imbriano C, Piccolo S (2003) Links between tumor suppressors: p53 is required for TGF-β gene responses by cooperating with SMADs. Cell 113:301–314

    CAS  PubMed  Google Scholar 

  52. Cordenonsi M, Montagner M, Adorno M, Zacchigna L, Martello G, Mamidi A, Soligo S, Dupont S, Piccolo S (2007) Integration of TGF-beta and Ras/MAPK signaling through p53 phosphorylation. Science 315:840–843

    CAS  PubMed  Google Scholar 

  53. Brezniceanu ML, Wei CC, Zhang SL, Hsieh TJ, Guo DF, Hébert MJ, Ingelfinger JR, Filep JG, Chan JS (2006) Transforming growth factor-β1 stimulates angiotensinogen gene expression in kidney proximal tubular cells. Kidney Int 69:1977–1985

    CAS  PubMed  Google Scholar 

  54. Kawarada Y, Inoue Y, Kawasaki F, Fukuura K, Sato K, Tanaka T, Itoh Y, Hayashi H (2016) TGF-β induces p53/Smads complex formation in the PAI-1 promoter to activate transcription. Sci Rep 19(6):35483. https://doi.org/10.1038/srep35483

    Article  CAS  Google Scholar 

  55. Higgins CE, Tang J, Mian BM, Higgins SP, Gifford CC, Conti DJ, Meldrum KK, Samarakoon R, Higgins PJ (2019) TGF-β1-p53 cooperativity regulates a profibrotic genomic program in the kidney: molecular mechanisms and clinical implications. FASEB J 10:10596–10606

    Google Scholar 

  56. Jiang M, Dong Z (2008) Regulation and pathological role of p53 in cisplatin nephrotoxicity. J Pharmacol Exp Ther 327:300–307

    CAS  PubMed  Google Scholar 

  57. Pabla N, Huang S, Mi QS, Daniel R, Dong Z (2008) ATR-Chk2 signaling in p53 activation and DNA damage response during cisplatin-induced apoptosis. J Biol Chem 283:6572–6583

    CAS  PubMed  Google Scholar 

  58. Jiang M, Wei Q, Wang J, Du Q, Yu J, Zhang L, Dong Z (2006) Regulation of PUMA-alpha by p53 in cisplatin-induced renal cell apoptosis. Oncogene 25:4056–4066

    CAS  PubMed  Google Scholar 

  59. Jenkins RH, Davies LC, Taylor PR, Akiyama H, Cumbes B, Beltrami C, Carrington CP, Phillips AO, Bowen T, Fraser DJ (2014) miR-192 induces G2/M growth arrest in aristolochic acid nephropathy. Am J Pathol 184:996–1009

    CAS  PubMed  Google Scholar 

  60. Eid AA, Ford BM, Block K, Kasinath BS, Gorin Y, Ghosh-Choudhury G, Barnes JL, Abboud HE (2010) AMP-activated protein kinase (AMPK) negatively regulates Nox4-dependent activation of p53 and epithelial cell apoptosis in diabetes. J Biol Chem 285:37503–37512

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Zhu S, Pabla N, Tang C, He L, Dong Z (2015) DNA damage response in cisplatin-induced nephrotoxicity. Arch Toxicol 89:2197–2205

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Pressly JD, Park F (2017) DNA repair in ischemic acute kidney injury. Am J Physiol Renal Physiol 312:F551–F555

    CAS  PubMed  Google Scholar 

  63. Sancar A, Lindsey-Boltz LA, Unsal-Kaçmaz K, Linn S (2004) Molecular mechanisms of mammalian DNA repair and the DNA damage checkpoints. Annu Rev Biochem 73:39–85

    CAS  PubMed  Google Scholar 

  64. Awasthi P, Foiani M, Kumar A (2015) ATM and ATR signaling at a glance. J Cell Sci 128:4255–4262

    CAS  PubMed  Google Scholar 

  65. Kishi S, Brooks CR, Taguchi K, Ichimura T, Mori Y, Akinfolarin A, Gupta N, Galichon P, Elias BC, Suzuki T, Wang Q, Gewin L, Morizane R, Bonventre JV (2019) Proximal tubule ATR regulates DNA repair to prevent maladaptive renal injury responses. J Clin Invest 129:4797–4816

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Campisi J, d’Adda di Fagagna F (2007) Cellular senescence: when bad things happen to good cells. Nat Rev Mol Cell Biol 8:729–740

    CAS  PubMed  Google Scholar 

  67. Narita M, Young AR, Arakawa S, Samarajiwa SA, Nakashima T, Yoshida S, Hong S, Berry LS, Reichelt S, Ferreira M, Tavaré S, Inoki K, Shimizu S, Narita M (2011) Spatial coupling of mTOR and autophagy augments secretory phenotypes. Science 332:966–970

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Acosta JC, Banito A, Wuestefeld T, Georgilis A, Janich P, Morton JP, Athineos D, Kang TW, Lasitschka F, Andrulis M, Pascual G, Morris KJ, Khan S, Jin H, Dharmalingam G, Snijders AP, Carroll T, Capper D, Pritchard C, Inman GJ, Longerich T, Sansom OJ, Benitah SA, Zender L, Gil J (2013) A complex secretory program orchestrated by the inflammasome controls paracrine senescence. Nat Cell Biol 15:978–990

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Canaud G, Brooks CR, Kishi S, Taguchi K, Nishimura K, Magassa S, Scott A, Hsiao LL, Ichimura T, Terzi F, Yang L, Bonventre JV (2019) Cyclin G1 and TASCC regulate kidney epithelial cell G2-M arrest and fibrotic maladaptive repair. Sci Transl Med 11:eaav4754

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Thomasova D, Bruns HA, Kretschmer V, Ebrahim M, Romoli S, Liapis H, Kotb AM, Endlich N, Anders HJ (2015) Murine double minute-2 prevents p53-overactivation-related cell death (podoptosis) of podocytes. J Am Soc Nephrol 26:1513–1523

    CAS  PubMed  Google Scholar 

  71. Saito R, Rocanin-Arjo A, You YH, Darshi M, Van Espen B, Miyamoto S, Pham J, Pu M, Romoli S, Natarajan L, Ju W, Kretzler M, Nelson R, Ono K, Thomasova D, Mulay SR, Ideker T, D’Agati V, Beyret E, Belmonte JC, Anders HJ, Sharma K (2016) Systems biology analysis reveals role of MDM2 in diabetic nephropathy. JCI Insight 1(17):e87877

    PubMed  PubMed Central  Google Scholar 

  72. Tomimaru Y, Tomokuni A, Nagano H, Doki Y, Mori M, Hayashi N (2011) Increases in p53 expression induce CTGF synthesis by mouse and human hepatocytes and result in liver fibrosis in mice. J Clin Invest 121:3343–3356

    PubMed  PubMed Central  Google Scholar 

  73. Cano A, Pérez-Moreno MA, Rodrigo I, Locascio A, Blanco MJ, del Barrio MG, Portillo F, Nieto MA (2000) The transcription factor snail controls epithelial-mesenchymal transitions by repressing E-cadherin expression. Nat Cell Biol 2:76–83

    CAS  PubMed  Google Scholar 

  74. Lovisa S, LeBleu VS, Tampe B, Sugimoto H, Vadnagara K, Carstens JL, Wu CC, Hagos Y, Burckhardt BC, Pentcheva-Hoang T, Nischal H, Allison JP, Zeisberg M, Kalluri R (2015) Epithelial-to-mesenchymal transition induces cell cycle arrest and parenchymal damage in renal fibrosis. Nat Med 9:998–1009

    Google Scholar 

  75. Grande MT, Sánchez-Laorden B, López-Blau C, De Frutos CA, Boutet A, Arévalo M, Rowe RG, Weiss SJ, López-Novoa JM, Nieto MA (2015) Snail1-induced partial epithelial-to-mesenchymal transition drives renal fibrosis in mice and can be targeted to reverse established disease. Nat Med 21:989–997

    CAS  PubMed  Google Scholar 

  76. Jin Y, Ratnam K, Chuang PY, Fan Y, Zhong Y, Dai Y, Mazloom AR, Chen EY, D’Agati V, Xiong H, Ross MJ, Chen N, Ma’ayan A, He JC (2012) A systems approach identifies HIPK2 as a key regulator of kidney fibrosis. Nat Med 18:580–588

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Colaluca IN, Tosoni D, Nuciforo P, Senic-Matuglia F, Galimberti V, Viale G, Pece S, Di Fiore PP (2008) NUMB controls p53 tumour suppressor activity. Nature 451:76–80

    CAS  PubMed  Google Scholar 

  78. Zhu F, Liu W, Li T, Wan J, Tian J, Zhou Z, Li H, Liu Y, Hou FF, Nie J (2016) Numb contributes to renal fibrosis by promoting tubular epithelial cell cycle arrest at G2/M. Oncotarget 7(18):25604–25619

    PubMed  PubMed Central  Google Scholar 

  79. Mimura I, Nangaku M (2010) The suffocating kidney: tubulointerstitial hypoxia in end-stage renal disease. Nat Rev Nephrol 6:667–678

    CAS  PubMed  Google Scholar 

  80. An WG, Kanekal M, Simon MC, Maltepe E, Blagosklonny MV, Neckers LM (1998) Stabilization of wild-type p53 by hypoxia-inducible factor 1α. Nature 392:405–408

    CAS  PubMed  Google Scholar 

  81. Nayak BK, Shanmugasundaram K, Friedrichs WE, Cavaglierii RC, Patel M, Barnes J, Block K (2016) HIF-1 mediates renal fibrosis in OVE26 Type 1 diabetic mice. Diabetes 65:1387–1397

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Higgins DF, Kimura K, Bernhardt WM, Shrimanker N, Akai Y, Hohenstein B, Saito Y, Johnson RS, Kretzler M, Cohen CD, Eckardt KU, Iwano M, Haase VH (2007) Hypoxia promotes fibrogenesis in vivo via HIF-1 stimulation of epithelial-to-mesenchymal transition. J Clin Invest 117:3810–3820

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Liu L, Zhang P, Bai M, He L, Zhang L, Liu T, Yang Z, Duan M, Liu M, Liu B, Du R, Qian Q, Sun S (2019) p53 upregulated by HIF-1α promotes hypoxia-induced G2/M arrest and renal fibrosis in vitro and in vivo. J Mol Cell Biol 11:371–382

    CAS  PubMed  Google Scholar 

  84. Niranjan T, Bielesz B, Gruenwald A, Ponda MP, Kopp JB, Thomas DB, Susztak K (2008) The Notch pathway in podocytes plays a role in the development of glomerular disease. Nat Med 14:290–298

    CAS  PubMed  Google Scholar 

  85. Bielesz B, Sirin Y, Si H, Niranjan T, Gruenwald A, Ahn S, Kato H, Pullman J, Gessler M, Haase VH, Susztak K (2010) Epithelial Notch signaling regulates interstitial fibrosis development in the kidneys of mice and humans. J Clin Invest 120:4040–4054

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Song MS, Salmena L, Pandolfi PP (2012) The functions and regulation of the PTEN tumour suppressor. Nat Rev Mol Cell Biol 13:283–296

    CAS  PubMed  Google Scholar 

  87. Lan R, Geng H, Polichnowski AJ, Singha PK, Saikumar P, McEwen DG, Griffin KA, Koesters R, Weinberg JM, Bidani AK, Kriz W, Venkatachalam MA (2012) PTEN lossdefines a TGF-β-induced tubule phenotype of failed differentiation and JNK signaling during renal fibrosis. Am J Physiol Renal Physiol 302:F1210–F1223

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Samarakoon R, Helo S, Dobberfuhl AD, Khakoo NS, Falke LL, Overstreet JM, Goldschmeding R, Higgins PJ (2015) Loss of tumor suppressor PTEN expression in renal injury initiates SMAD3 and p53 dependent fibrotic responses. J Pathol 236:421–432

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Kortlever RM, Higgins PJ, Bernards R (2006) Plasminogen activator inhibitor-1 is a critical downstream target of p53 in the induction of replicative senescence. Nat Cell Biol 8:877–884

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Gifford CC, Lian F, Tang J, Costello A, Goldschmeding R, Samarakoon R, Higgins PJ (2021) PAI-1 induction during kidney injury promotes fibrotic epithelial dysfunction via deregulation of klotho, p53, and TGF-β1-receptor signaling. FASEB J 35:e21725

    CAS  PubMed  Google Scholar 

  91. Trionfini P, Benigni A, Remuzzi G (2015) MicroRNAs in kidney physiology and disease. Nat Rev Nephrol 11:23–33

    CAS  PubMed  Google Scholar 

  92. Kato M, Putta S, Wang M, Yuan H, Lanting L, Nair I, Gunn A, Nakagawa Y, Shimano H, Todorov I, Rossi JJ, Natarajan R (2009) TGF-beta activates Akt kinase through a microRNA-dependent amplifying circuit targeting PTEN. Nat Cell Biol 11:881–889

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Deshpande SD, Putta S, Wang M, Lai JY, Bitzer M, Nelson RG, Lanting LL, Kato M, Natarajan R (2013) Transforming growth factor-β-induced cross talk between p53 and a microRNA in the pathogenesis of diabetic nephropathy. Diabetes 62:3151–3162

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Putta S, Lanting L, Sun G, Lawson G, Kato M, Natarajan R (2012) Inhibiting microRNA-192 ameliorates renal fibrosis in diabetic nephropathy. J Am Soc Nephrol 23:458–469

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Hao J, Lou Q, Wei Q, Mei S, Li L, Wu G, Mi QS, Mei C, Dong Z (2017) MicroRNA-375 is induced in cisplatin nephrotoxicity to repress hepatocyte nuclear factor 1-β. J Biol Chem 292:4571–4582

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Hao J, Wei Q, Mei S, Li L, Su Y, Mei C, Dong Z (2017) Induction of microRNA-17-5p by p53 protects against renal ischemia-reperfusion injury by targeting death receptor 6. Kidney Int 91:106–118

    CAS  PubMed  Google Scholar 

  97. Wu J, Zheng C, Fan Y, Zeng C, Chen Z, Qin W, Zhang C, Zhang W, Wang X, Zhu X, Zhang M, Zen K, Liu Z (2014) Downregulation of microRNA-30 facilitates podocyte injury and is prevented by glucocorticoids. J Am Soc Nephrol 25:92–104

    CAS  PubMed  Google Scholar 

  98. Shi S, Yu L, Zhang T, Qi H, Xavier S, Ju W, Bottinger E (2013) Smad2-dependent downregulation of miR-30 is required for TGF-β-induced apoptosis in podocytes. PLoS One 8(9):e75572. https://doi.org/10.1371/journal.pone.0075572.eCollection2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Liu Y, Bi X, Xiong J et al (2019) MicroRNA-34a promotes renal fibrosis by downregulation of Klotho in tubular epithelial cells. Mol Ther 27:1051–1065

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Tang C et al (2020) Autophagy in kidney homeostasis and disease. Nat Rev Nephrol 16:489–508

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Tagawa A et al (2016) Impaired podocyte autophagy exacerbates proteinuria in diabetic nephropathy. Diabetes 65:755–767

    CAS  PubMed  Google Scholar 

  102. Ma Z et al (2020) p53/microRNA-214/ULK1 axis impairs renal tubular autophagy in diabetic kidney disease. J Clin Invest 130:5011–5026

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Alidori S, Akhavein N, Thorek DL, Behling K, Romin Y, Queen D, Beattie BJ, Manova-Todorova K, Bergkvist M, Scheinberg DA, McDevitt MR (2016) Targeted fibrillar nanocarbon RNAi treatment of acute kidney injury. Sci Transl Med. 8(331):331ra39. https://doi.org/10.1126/scitranslmed.aac9647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. ClinicalTrials.gov Identifier: NCT03510897. QPI-1002 Phase 3 for Prevention of Major Adverse Kidney Events (MAKE) in Subjects at High Risk for AKI Following Cardiac Surgery. Sponsor: Quark Pharmaceuticals. QPI-1002 Phase 3 for Prevention of Major Adverse Kidney Events (MAKE) in Subjects at High Risk for AKI Following Cardiac Surgery - Full Text View - ClinicalTrials.gov

Download references

Acknowledgements

None

Funding

Supported by NIH Grant GM057242 to PJH and a Capital District Medical Research Institute Grant to RS.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Paul J. Higgins or Rohan Samarakoon.

Ethics declarations

Conflict of interest

The authors have not disclosed any competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Overstreet, J.M., Gifford, C.C., Tang, J. et al. Emerging role of tumor suppressor p53 in acute and chronic kidney diseases. Cell. Mol. Life Sci. 79, 474 (2022). https://doi.org/10.1007/s00018-022-04505-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00018-022-04505-w

Keywords

Navigation