Skip to main content

Advertisement

Log in

Extracellular vesicles carrying proinflammatory factors may spread atherosclerosis to remote locations

  • Original Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Most cells involved in atherosclerosis release extracellular vesicles (EVs), which can carry bioactive substances to downstream tissues via circulation. We hypothesized that EVs derived from atherosclerotic plaques could promote atherogenesis in remote locations, a mechanism that mimics the blood metastasis of cancer. Ldlr gene knockout (Ldlr KO) rats were fed on a high cholesterol diet and underwent partial carotid ligation to induce local atherosclerosis. EVs were separated from carotid artery tissues and downstream blood of carotid ligation by centrifugation. MiRNA sequencing and qPCR were then performed to detect miRNA differences in EVs from rats with and without induced carotid atherosclerosis. Biochemical analyses demonstrated that EVs derived from atherosclerosis could increase the expression of ICAM-1, VCAM-1, and E-selectin in endothelial cells in vitro. EVs derived from atherosclerosis contained a higher level of miR-23a-3p than those derived from controls. MiR-23a-3p could promote endothelial inflammation by targeting Dusp5 and maintaining ERK1/2 phosphorylation in vitro. Inhibiting EV release could attenuate atherogenesis and reduce macrophage infiltration in vivo. Intravenously administrating atherosclerotic plaque-derived EVs could induce intimal inflammation, arterial wall thickening and lumen narrowing in the carotids of Ldlr KO rats, while simultaneous injection of miR-23a-3p antagomir could reverse this reaction. The results suggested that EVs may transfer atherosclerosis to remote locations by carrying proinflammatory factors, particularly miR-23a-3p.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

Enquiries about data availability should be directed to the authors.

Abbreviations

EVs:

Extracellular vesicles

EC:

Endothelial cell

miRNA:

MicroRNA

3′-UTR:

3′-Untranslated region

DUSP5:

Dual specificity phosphatase 5

MAPK:

Mitogen-activated protein kinase

Ldlr KO:

Ldlr Gene knockout

HFHC:

High fat high cholesterol

LCA:

Left carotid artery

TEM:

Transmission electron microscopy

ICAM-1:

Intercellular adhesion molecule-1

VCAM-1:

Vascular cell adhesion molecule-1

ERK:

Extracellular regulated kinase

References

  1. Drakopoulou M, Oikonomou G, Soulaidopoulos S, Toutouzas K, Tousoulis D (2019) Management of patients with concomitant coronary and carotid artery disease. Expert Rev Cardiovasc Ther 17(8):575–583

    Article  CAS  PubMed  Google Scholar 

  2. Jashari F, Ibrahimi P, Nicoll R, Bajraktari G, Wester P, Henein MY (2013) Coronary and carotid atherosclerosis: similarities and differences. Atherosclerosis 227(2):193–200

    Article  CAS  PubMed  Google Scholar 

  3. Tzoulaki I, Castagné R, Boulangé CL, Karaman I, Chekmeneva E, Evangelou E, Ebbels TMD, Kaluarachchi MR, Chadeau-Hyam M, Mosen D et al (2019) Serum metabolic signatures of coronary and carotid atherosclerosis and subsequent cardiovascular disease. Eur Heart J 40(34):2883–2896

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Brooks SA, Lomax-Browne HJ, Carter TM, Kinch CE, Hall DM (2010) Molecular interactions in cancer cell metastasis. Acta Histochem 112(1):3–25

    Article  CAS  PubMed  Google Scholar 

  5. Chaffer CL, Weinberg RA (2011) A perspective on cancer cell metastasis. Science 331(6024):1559–1564 (Electronic)

    Article  CAS  PubMed  Google Scholar 

  6. van der Pol E, Boing AN, Harrison P, Sturk A, Nieuwland R (2012) Classification, functions, and clinical relevance of extracellular vesicles. Pharmacol Rev 64(3):676–705

    Article  PubMed  Google Scholar 

  7. Boulanger CM, Loyer X, Rautou PE, Amabile N (2017) Extracellular vesicles in coronary artery disease. Nat Rev Cardiol 14(5):259–272

    Article  CAS  PubMed  Google Scholar 

  8. Peng M, Liu X, Xu G (2020) Extracellular vesicles as messengers in atherosclerosis. J Cardiovasc Transl Res 13(2):121–130

    Article  PubMed  Google Scholar 

  9. Suades R, Padro T, Alonso R, Lopez-Miranda J, Mata P, Badimon L (2014) Circulating CD45+/CD3+ lymphocyte-derived microparticles map lipid-rich atherosclerotic plaques in familial hypercholesterolaemia patients. Thromb Haemost 111(1):111–121

    Article  CAS  PubMed  Google Scholar 

  10. Christersson C, Thulin A, Siegbahn A (2017) Microparticles during long-term follow-up after acute myocardial infarction. Association to atherosclerotic burden and risk of cardiovascular events. Thromb Haemost 117(8):1571–1581

    Article  PubMed  Google Scholar 

  11. Suades R, Padro T, Alonso R, Mata P, Badimon L (2015) High levels of TSP1+/CD142+ platelet-derived microparticles characterise young patients with high cardiovascular risk and subclinical atherosclerosis. Thromb Haemost 114(6):1310–1321

    Article  PubMed  Google Scholar 

  12. Rautou P-E, Leroyer AS, Ramkhelawon B, Devue C, Duflaut D, Vion A-C, Nalbone G, Castier Y, Leseche G, Lehoux S et al (2011) Microparticles from human atherosclerotic plaques promote endothelial ICAM-1–dependent monocyte adhesion and transendothelial migration. Circ Res 108(3):335–343

    Article  CAS  PubMed  Google Scholar 

  13. Wadey RM, Connolly KD, Mathew D, Walters G, Rees DA, James PE (2019) Inflammatory adipocyte-derived extracellular vesicles promote leukocyte attachment to vascular endothelial cells. Atherosclerosis 283:19–27

    Article  CAS  PubMed  Google Scholar 

  14. Gao W, Liu H, Yuan J, Wu C, Huang D, Ma Y, Zhu J, Ma L, Guo J, Shi H et al (2016) Exosomes derived from mature dendritic cells increase endothelial inflammation and atherosclerosis via membrane TNF-alpha mediated NF-kappaB pathway. J Cell Mol Med 20(12):2318–2327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Cai J, Guan W, Tan X, Chen C, Li L, Wang N, Zou X, Zhou F, Wang J, Pei F et al (2015) SRY gene transferred by extracellular vesicles accelerates atherosclerosis by promotion of leucocyte adherence to endothelial cells. Clin Sci (Lond) 129(3):259–269

    Article  CAS  Google Scholar 

  16. Hoyer FF, Giesen MK, Nunes Franca C, Lutjohann D, Nickenig G, Werner N (2012) Monocytic microparticles promote atherogenesis by modulating inflammatory cells in mice. J Cell Mol Med 16(11):2777–2788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136(2):215–233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Jansen F, Yang X, Proebsting S, Hoelscher M, Przybilla D, Baumann K, Schmitz T, Dolf A, Endl E, Franklin BS et al (2014) MicroRNA expression in circulating microvesicles predicts cardiovascular events in patients with coronary artery disease. J Am Heart Assoc 3(6):e001249

    Article  PubMed  PubMed Central  Google Scholar 

  19. Li C, Li S, Zhang F, Wu M, Liang H, Song J, Lee C, Chen H (2018) Endothelial microparticles-mediated transfer of microRNA-19b promotes atherosclerosis via activating perivascular adipose tissue inflammation in apoE(-/-) mice. Biochem Biophys Res Commun 495(2):1922–1929

    Article  CAS  PubMed  Google Scholar 

  20. Liu Y, Li Q, Hosen MR, Zietzer A, Flender A, Levermann P, Schmitz T, Fruhwald D, Goody P, Nickenig G et al (2019) Atherosclerotic conditions promote the packaging of functional MicroRNA-92a-3p into endothelial microvesicles. Circ Res 124(4):575–587

    Article  CAS  PubMed  Google Scholar 

  21. Nguyen MA, Karunakaran D, Geoffrion M, Cheng HS, Tandoc K, Perisic Matic L, Hedin U, Maegdefessel L, Fish JE, Rayner KJ (2018) Extracellular vesicles secreted by atherogenic macrophages transfer microRNA to inhibit cell migration. Arterioscler Thromb Vasc Biol 38(1):49–63

    Article  CAS  PubMed  Google Scholar 

  22. Zhu J, Liu B, Wang Z, Wang D, Ni H, Zhang L, Wang Y (2019) Exosomes from nicotine-stimulated macrophages accelerate atherosclerosis through miR-21-3p/PTEN-mediated VSMC migration and proliferation. Theranostics 9(23):6901–6919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Jiang F, Chen Q, Wang W, Ling Y, Yan Y, Xia P (2020) Hepatocyte-derived extracellular vesicles promote endothelial inflammation and atherogenesis via microRNA-1. J Hepatol 72(1):156–166

    Article  CAS  PubMed  Google Scholar 

  24. He K, Wang J, Shi H, Yu Q, Zhang X, Guo M, Sun H, Lin X, Wu Y, Wang L et al (2019) An interspecies study of lipid profiles and atherosclerosis in familial hypercholesterolemia animal models with low-density lipoprotein receptor deficiency. Am J Transl Res 11(5):3116–3127

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Zhao Y, Yang Y, Xing R, Cui X, Xiao Y, Xie L, You P, Wang T, Zeng L, Peng W et al (2018) Hyperlipidemia induces typical atherosclerosis development in Ldlr and Apoe deficient rats. Atherosclerosis 271:26–35

    Article  CAS  PubMed  Google Scholar 

  26. Wasserman BA (2002) Clinical carotid atherosclerosis. Neuroimaging Clin N Am 12(3):403–419

    Article  PubMed  Google Scholar 

  27. Gokaldas R, Singh M, Lal S, Benenstein RJ, Sahni R (2015) Carotid stenosis: from diagnosis to management, where do we stand? Curr Atheroscler Rep 17(2):480

    Article  PubMed  Google Scholar 

  28. Nam D, Ni CW, Rezvan A, Suo J, Budzyn K, Llanos A, Harrison D, Giddens D, Jo H (2009) Partial carotid ligation is a model of acutely induced disturbed flow, leading to rapid endothelial dysfunction and atherosclerosis. Am J Physiol Heart Circ Physiol 297(4):H1535–H1543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Vella LJ, Scicluna BJ, Cheng L, Bawden EG, Masters CL, Ang CS, Willamson N, McLean C, Barnham KJ, Hill AF (2017) A rigorous method to enrich for exosomes from brain tissue. J Extracell Vesicles 6(1):1348885

    Article  PubMed  PubMed Central  Google Scholar 

  30. Ngolab J, Trinh I, Rockenstein E, Mante M, Florio J, Trejo M, Masliah D, Adame A, Masliah E, Rissman RA (2017) Brain-derived exosomes from dementia with Lewy bodies propagate alpha-synuclein pathology. Acta Neuropathol Commun 5(1):46

    Article  PubMed  PubMed Central  Google Scholar 

  31. Coumans FAW, Brisson AR, Buzas EI, Dignat-George F, Drees EEE, El-Andaloussi S, Emanueli C, Gasecka A, Hendrix A, Hill AF et al (2017) Methodological guidelines to study extracellular vesicles. Circ Res 120(10):1632–1648

    Article  CAS  PubMed  Google Scholar 

  32. Kobayashi M, Inoue E, Fau-Warabi K, Warabi T, Fau-Minami E, Minami T, Fau-Kodama T, Kodama T (2005) A simple method of isolating mouse aortic endothelial cells. J Atheroscler Thromb 12(3):138–142

    Article  PubMed  Google Scholar 

  33. Baudin B, Bruneel A, Bosselut N, Vaubourdolle M (2007) A protocol for isolation and culture of human umbilical vein endothelial cells. Nat Protoc 2(3):481–485

    Article  CAS  PubMed  Google Scholar 

  34. Osteikoetxea X, Sodar B, Nemeth A, Szabo-Taylor K, Paloczi K, Vukman KV, Tamasi V, Balogh A, Kittel A, Pallinger E et al (2015) Differential detergent sensitivity of extracellular vesicle subpopulations. Org Biomol Chem 13(38):9775–9782

    Article  CAS  PubMed  Google Scholar 

  35. Tian Y, Gong M, Hu Y, Liu H, Zhang W, Zhang M, Hu X, Aubert D, Zhu S, Wu L et al (2020) Quality and efficiency assessment of six extracellular vesicle isolation methods by nano-flow cytometry. J Extracell Vesicles 9(1):1697028

    Article  CAS  PubMed  Google Scholar 

  36. Su Y, Yuan J, Zhang F, Lei Q, Zhang T, Li K, Guo J, Hong Y, Bu G, Lv X et al (2019) MicroRNA-181a-5p and microRNA-181a-3p cooperatively restrict vascular inflammation and atherosclerosis. Cell Death Dis 10(5):365

    Article  PubMed  PubMed Central  Google Scholar 

  37. Tkach M, Kowal J, Thery C (2018) Why the need and how to approach the functional diversity of extracellular vesicles. Philos Trans R Soc Lond B Biol Sci 373(1737):1–9

    Article  Google Scholar 

  38. Kowal J, Arras G, Colombo M, Jouve M, Morath JP, Primdal-Bengtson B, Dingli F, Loew D, Tkach M, Thery C (2016) Proteomic comparison defines novel markers to characterize heterogeneous populations of extracellular vesicle subtypes. Proc Natl Acad Sci U S A 113(8):E968–E977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Thery C, Witwer KW, Aikawa E, Alcaraz MJ, Anderson JD, Andriantsitohaina R, Antoniou A, Arab T, Archer F, Atkin-Smith GK et al (2018) Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J Extracell Vesicles 7(1):1535750

    Article  PubMed  PubMed Central  Google Scholar 

  40. Gyorgy B, Modos K, Pallinger E, Paloczi K, Pasztoi M, Misjak P, Deli MA, Sipos A, Szalai A, Voszka I et al (2011) Detection and isolation of cell-derived microparticles are compromised by protein complexes resulting from shared biophysical parameters. Blood 117(4):e39-48

    Article  CAS  PubMed  Google Scholar 

  41. Kutty RG, Talipov MR, Bongard RD, Lipinski RAJ, Sweeney NL, Sem DS, Rathore R, Ramchandran R (2017) Dual specificity phosphatase 5-substrate interaction: a mechanistic perspective. Compr Physiol 7(4):1449–1461

    Article  PubMed  Google Scholar 

  42. Catalano M, O’Driscoll L (2020) Inhibiting extracellular vesicles formation and release: a review of EV inhibitors. J Extracell Vesicles 9(1):1703244

    Article  CAS  PubMed  Google Scholar 

  43. Canault M, Leroyer AS, Peiretti F, Leseche G, Tedgui A, Bonardo B, Alessi MC, Boulanger CM, Nalbone G (2007) Microparticles of human atherosclerotic plaques enhance the shedding of the tumor necrosis factor-alpha converting enzyme/ADAM17 substrates, tumor necrosis factor and tumor necrosis factor receptor-1. Am J Pathol 171(5):1713–1723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Fu Z, Zhou E, Wang X, Tian M, Kong J, Li J, Ji L, Niu C, Shen H, Dong S et al (2017) Oxidized low-density lipoprotein-induced microparticles promote endothelial monocyte adhesion via intercellular adhesion molecule 1. Am J Physiol Cell Physiol 313(5):C567–C574

    Article  PubMed  Google Scholar 

  45. Shankman LS, Gomez D, Cherepanova OA, Salmon M, Alencar GF, Haskins RM, Swiatlowska P, Newman AA, Greene ES, Straub AC et al (2015) KLF4-dependent phenotypic modulation of smooth muscle cells has a key role in atherosclerotic plaque pathogenesis. Nat Med 21(6):628–637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Misra A, Feng Z, Chandran RR, Kabir I, Rotllan N, Aryal B, Sheikh AQ, Ding L, Qin L, Fernandez-Hernando C et al (2018) Integrin beta3 regulates clonality and fate of smooth muscle-derived atherosclerotic plaque cells. Nat Commun 9(1):2073

    Article  PubMed  PubMed Central  Google Scholar 

  47. Hildebrandt A, Kirchner B, Meidert AS, Brandes F, Lindemann A, Doose G, Doege A, Weidenhagen R, Reithmair M, Schelling G et al (2021) Detection of atherosclerosis by small RNA-sequencing analysis of extracellular vesicle enriched serum samples. Front Cell Dev Biol 9:729061

    Article  PubMed  PubMed Central  Google Scholar 

  48. Hoshino A, Kim HS, Bojmar L, Gyan KE, Cioffi M, Hernandez J, Zambirinis CP, Rodrigues G, Molina H, Heissel S et al (2020) Extracellular Vesicle and Particle Biomarkers Define Multiple Human Cancers. Cell 182(4):1044-1061e18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Fan X, Chen X, Feng Q, Peng K, Wu Q, Passerini AG, Simon SI, Sun C (2019) Downregulation of GATA6 in mTOR-inhibited human aortic endothelial cells: effects on TNF-α-induced VCAM-1 expression and monocytic cell adhesion. Am J Physiol Heart Circ Physiol 316:H408–H420

    Article  CAS  PubMed  Google Scholar 

  50. Sun D, Ma T, Zhang Y, Zhang F, Cui B (2021) Overexpressed miR-335-5p reduces atherosclerotic vulnerable plaque formation in acute coronary syndrome. J Clin Lab Anal 35(2):e23608

    Article  CAS  PubMed  Google Scholar 

  51. Luo L, Xia L, Zha B, Zuo C, Deng D, Chen M, Hu L, He Y, Dai F, Wu J et al (2018) miR-335-5p targeting ICAM-1 inhibits invasion and metastasis of thyroid cancer cells. Biomed Pharmacother 106:983–990

    Article  CAS  PubMed  Google Scholar 

  52. Yang S, Ye ZM, Chen S, Luo XY, Chen SL, Mao L, Li Y, Jin H, Yu C, Xiang FX et al (2018) MicroRNA-23a-5p promotes atherosclerotic plaque progression and vulnerability by repressing ATP-binding cassette transporter A1/G1 in macrophages. J Mol Cell Cardiol 123:139–149

    Article  CAS  PubMed  Google Scholar 

  53. Guo J, Mei H, Sheng Z, Meng Q, Véniant MM, Yin H (2020) Hsa-miRNA-23a-3p promotes atherogenesis in a novel mouse model of atherosclerosis. J Lipid Res 61(12):1764–1775

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Lu N, Malemud CJ (2019) Extracellular signal-regulated kinase: a regulator of cell growth, inflammation, chondrocyte and bone cell receptor-mediated gene expression. Int J Mol Sci 20(15):1–18

    Article  Google Scholar 

  55. Lassailly G, Bou Saleh M, Leleu-Chavain N, Ningarhari M, Gantier E, Carpentier R, Artru F, Gnemmi V, Bertin B, Maboudou P et al (2019) Nucleotide-binding oligomerization domain 1 (NOD1) modulates liver ischemia reperfusion through the expression adhesion molecules. J Hepatol 70(6):1159–1169

    Article  CAS  PubMed  Google Scholar 

  56. Li YA-O, Alhendi AMN, Yeh MC, Elahy M, Santiago FS, Deshpande NA-O, Wu B, Chan EA-O, Inam S, Prado-Lourenco L et al (2020) Thermostable small-molecule inhibitor of angiogenesis and vascular permeability that suppresses a pERK-FosB/ΔFosB-VCAM-1 axis. Sci Adv 6(31):2375–2548 (Electronic)

    Article  Google Scholar 

  57. Chun SY, Lee KS, Nam KS (2017) Refined deep-sea water suppresses inflammatory responses via the MAPK/AP-1 and NF-kappaB signaling pathway in lps-treated RAW 2647 macrophage cells. Int J Mol Sci 18(11):2282

    Article  PubMed Central  Google Scholar 

  58. Ding XW, Sun X, Shen XF, Lu Y, Wang JQ, Sun ZR, Miao CH, Chen JW (2019) Propofol attenuates TNF-alpha-induced MMP-9 expression in human cerebral microvascular endothelial cells by inhibiting Ca(2+)/CAMK II/ERK/NF-kappaB signaling pathway. Acta Pharmacol Sin 40(10):1303–1313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Becker A, Thakur BK, Weiss JM, Kim HS, Peinado H, Lyden D (2016) Extracellular vesicles in cancer: cell-to-cell mediators of metastasis. Cancer Cell 30(6):836–848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank Guangzhou Sagene Biotech Co., Ltd. for their technical assistance in making a pattern diagram.

Funding

This work was partly supported by the National Nature Science Foundation of China under Grant NSFC # 81870947 to GX and the National Nature Science Foundation of China under Grant NSFC # 81870946 to XL.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xinfeng Liu or Gelin Xu.

Ethics declarations

Conflict of interest

The authors report no conflicts of interest.

Ethics approval

The study was approved by the Animal Subject Review Board of Jinling Hospital (2020JLHGKJDWLS-114) and was performed according to the Guide for National Institutes of Health for the Care and Use of Laboratory Animals.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1472 KB)

Supplementary file2 (PDF 185 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, M., Sun, R., Hong, Y. et al. Extracellular vesicles carrying proinflammatory factors may spread atherosclerosis to remote locations. Cell. Mol. Life Sci. 79, 430 (2022). https://doi.org/10.1007/s00018-022-04464-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00018-022-04464-2

Keywords

Navigation