Skip to main content

Advertisement

Log in

Neuropeptides and small-molecule amine transmitters: cooperative signaling in the nervous system

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Neuropeptides are expressed in cell-specific patterns throughout mammalian brain. Neuropeptide gene expression has been useful for clustering neurons by phenotype, based on single-cell transcriptomics, and for defining specific functional circuits throughout the brain. How neuropeptides function as first messengers in inter-neuronal communication, in cooperation with classical small-molecule amine transmitters (SMATs) is a current topic of systems neurobiology. Questions include how neuropeptides and SMATs cooperate in neurotransmission at the molecular, cellular and circuit levels; whether neuropeptides and SMATs always co-exist in neurons; where neuropeptides and SMATs are stored in the neuron, released from the neuron and acting, and at which receptors, after release; and how neuropeptides affect ‘classical’ transmitter function, both directly upon co-release, and indirectly, via long-term regulation of gene transcription and neuronal plasticity. Here, we review an extensive body of data about the distribution of neuropeptides and their receptors, their actions after neuronal release, and their function based on pharmacological and genetic loss- and gain-of-function experiments, that addresses these questions, fundamental to understanding brain function, and development of neuropeptide-based, and potentially combinatorial peptide/SMAT-based, neurotherapeutics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Enquiries about data availability should be directed to the authors.

Notes

  1. This number varies because neuropeptides can be counted as entities depending on individual molecular structure (PACAP-27 and PACAP-38 two distinct peptides) or by gene family (PACAP-27, PACAP-38, and PrP one entry). More important than an exact number is the fact that there are at least fifty separate neuropeptides with either known or putative physiological actions in the brain, paired with at least that number of cognate, although overlapping receptors, and that this is a lot more than the number of SMATs and SMAT receptors.

  2. The term ‘neurotransmission’ is used herein to refer to both fast transmission via ionotropic receptor activation, and slow transmission via metabotropic receptor activation, following SMAT or neuropeptide release from secretory vesicles upon neuronal excitation. We use the term SMATs, in this review, solely to provide a shorthand for referring to the small molecule amine-containing classical transmitters acetylcholine, dopamine, epinephrine, gamma-amino butyric acid, glutamate (GABA), histamine, norepinephrine, serotonin. These are referred to as ‘small’ due to their molecular weight (dopamine, 153; epinephrine, 183; GABA 103; glutamate 147; histamine 111; norepinephrine, 169; serotonin 176 g/mol) compared to neuropeptides (ranging from the smallest, the tripeptide TRH, 362 g/mol; to the relatively large, the 38-mer PACAP, 4534 g/mol).

References

  1. Wang Y et al (2015) NeuroPep: a comprehensive resource of neuropeptides. Database (Oxford) 2015:bav038

    Google Scholar 

  2. Foster SR et al (2019) Discovery of human signaling systems: pairing peptides to g protein-coupled receptors. Cell 179(4):895–908 (e21)

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Yosten GL et al (2020) GPR160 de-orphanization reveals critical roles in neuropathic pain in rodents. J Clin Invest 130(5):2587–2592

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Janssen T et al (2010) Coevolution of neuropeptidergic signaling systems: from worm to man. Ann NY Acad Sci 1200:1–14

    CAS  PubMed  Google Scholar 

  5. O’Carroll AM et al (2013) The apelin receptor APJ: journey from an orphan to a multifaceted regulator of homeostasis. J Endocrinol 219(1):R13-35

    CAS  PubMed  Google Scholar 

  6. Yosten GL, Redlinger LJ, Samson WK (2012) Evidence for an interaction of neuronostatin with the orphan G protein-coupled receptor, GPR107. Am J Physiol Regul Integr Comp Physiol 303(9):R941–R949

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Cooper JR, Bloom FE, Roth RH (1978) The biochemical basis of neuropharmacology, 3rd edn. Oxford University Press, New York, p 327

    Google Scholar 

  8. Greengard P (2001) The neurobiology of slow synaptic transmission. Science 294:1024–1030

    CAS  PubMed  Google Scholar 

  9. Agnati LF et al (1995) Intercellular communication in the brain: wiring versus volume transmission. Neuroscience 69(3):711–726

    CAS  PubMed  Google Scholar 

  10. Chini B, Verhage M, Grinevich V (2017) The action radius of oxytocin release in the mammalian CNS: from single vesicles to behavior. Trends Pharmacol Sci 38(11):982–991

    CAS  PubMed  Google Scholar 

  11. Sabbatini RME (2003) Neurons and synapses: the history of its discovery. Mind Brain Magazine 16, Dec 2002–May 2003

  12. Davenport AP et al (2020) Advances in therapeutic peptides targeting G protein-coupled receptors. Nat Rev Drug Discov 19(6):389–413

    CAS  PubMed  Google Scholar 

  13. Bayliss WM, Starling EH (1902) On the causation of the so-called ‘peripheral reflex secretion’ of the pancreas. Proc Roy Soc Lond 69:352–353

    CAS  Google Scholar 

  14. Creutzfeldt W (1979) The incretin concept today. Diabetologia 16(2):75–85

    CAS  PubMed  Google Scholar 

  15. Jörnvall H, Agerberth B, Zasloff M (2008) Viktor Mutt: a giant in the field of bioactive peptides. Compr Biochem 46:397–416

    Google Scholar 

  16. Rehfeld JF (2018) The Origin and understanding of the incretin concept. Front Endocrinol (Lausanne) 9:387

    Google Scholar 

  17. Hökfelt T (1991) Neuropeptides in perspective: the last ten years. Neuron 7:867–879

    PubMed  Google Scholar 

  18. Valenstein ES (2002) The discovery of chemical neurotransmitters. Brain Cogn 49(1):73–95

    PubMed  Google Scholar 

  19. Fink G (2015) 60 Years of neuroendocrinology: memoir: Harris’ neuroendocrine revolution: of portal vessels and self-priming. J Endocrinol 226(2):T13-24

    CAS  PubMed  Google Scholar 

  20. Zimmerman EA, Robinson AG (1976) Hypothalamic neurons secreting vasopressin and neurophysin. Kidney Int 10(1):12–24

    CAS  PubMed  Google Scholar 

  21. Banerjee P, Joy KP, Chaube R (2017) Structural and functional diversity of nonapeptide hormones from an evolutionary perspective: a review. Gen Comp Endocrinol 241:4–23

    CAS  PubMed  Google Scholar 

  22. Chretien M (2013) How the prohormone theory solved two important controversies in hormonal and neural Peptide biosynthesis. Front Endocrinol (Lausanne) 4:148

    Google Scholar 

  23. Uhler M, Herbert E (1983) Complete amino acid sequence of mouse pro-opiomelanocortin derived from the nucleotide sequence of pro-opiomelanocortin cDNA. J Biol Chem 258(1):257–261

    CAS  PubMed  Google Scholar 

  24. Nakanishi S et al (1979) Nucleotide sequence of cloned cDNA for bovine corticotropin-beta-lipotropin precursor. Nature 278(5703):423–427

    CAS  PubMed  Google Scholar 

  25. Chretien M, Mbikay M (2016) 60 Years of POMC: from the prohormone theory to pro-opiomelanocortin and to proprotein convertases (PCSK1 to PCSK9). J Mol Endocrinol 56(4):T49-62

    CAS  PubMed  Google Scholar 

  26. Lietz CB et al (2018) Phosphopeptidomics reveals differential phosphorylation states and novel SxE Phosphosite motifs of neuropeptides in dense core secretory vesicles. J Am Soc Mass Spectrom 29(5):935–947

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Emery AC et al (2016) C-terminal amidation of PACAP-38 and PACAP-27 is dispensable for biological activity at the PAC1 receptor. Peptides 79:39–48

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Czyzyk TA et al (2005) Deletion of peptide amidation enzymatic activity leads to edema and embryonic lethality in the mouse. Dev Biol 287(2):301–313

    CAS  PubMed  Google Scholar 

  29. Yang N et al (2018) Neuropeptidomics of the rat habenular nuclei. J Proteome Res 17(4):1463–1473

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Taylor SW et al (2008) A sulfated, phosphorylated 7 kDa secreted peptide characterized by direct analysis of cell culture media. J Proteome Res 7(2):795–802

    CAS  PubMed  Google Scholar 

  31. Falkensammer G, Fischer-Colbrie R, Winkler H (1985) Biogenesis of chromaffin granules: incorporation of sulfate into chromogranin B and into a proteoglycan. J Neurochem 45(5):1475–1480

    CAS  PubMed  Google Scholar 

  32. Schäfer MK-H et al (1994) Pan-neuronal expression of chromogranin A in rat nervous system. Peptides 15:263–279

    PubMed  Google Scholar 

  33. Woulfe J, Deng D, Munoz D (1999) Chromogranin A in the central nervous system of the rat: pan-neuronal expression of its mRNA and selective expression of the protein. Neuropeptides 33:285–300

    CAS  PubMed  Google Scholar 

  34. Jan YN, Jan LY, Kuffler SW (1979) A peptide as a possible transmitter in sympathetic ganglia of the frog. Proc Natl Acad Sci USA 76(3):1501–1505

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Jones SW et al (1984) Teleost luteinizing hormone-releasing hormone: action on bullfrog sympathetic ganglia is consistent with role as neurotransmitter. J Neurosci 4(2):420–429

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Jan YN, Jan LH (1983) A LHRH-like peptidergic neurotransmitter capable of ‘action at a distance’ in autonomic ganglia. Trend Neurosci 1983:363–374

    Google Scholar 

  37. Eiden LE, Brownstein MJ (1981) Extrahypothalamic distributions and functions of hypothalamic peptide hormones. Fed Proc 40(11):2553–2559

    CAS  PubMed  Google Scholar 

  38. Hokfelt T et al (2018) Neuropeptide and small transmitter coexistence: fundamental studies and relevance to mental illness. Front Neural Circuits. https://doi.org/10.3389/fncir.2018.00106 (Article 12)

    Article  PubMed  PubMed Central  Google Scholar 

  39. Lundberg JM et al (1979) Occurrence of vasoactive intestinal polypeptide (VIP)-like immunoreactivity in certain cholinergic neurons of the cat: evidence from combined immunohistochemistry and acetylcholinesterase staining. Neuroscience 4:1539–1559

    CAS  PubMed  Google Scholar 

  40. Lundberg JM, Hokfelt T (1986) Multiple co-existence of peptides and classical transmitters in peripheral autonomic and sensory neurons–functional and pharmacological implications. Prog Brain Res 68:241–262

    CAS  PubMed  Google Scholar 

  41. Hökfelt T et al (2000) Neuropeptides–an overview. Neuropharmacol 39:1337–1356

    Google Scholar 

  42. Xu ZQ, Shi TJ, Hokfelt T (1998) Galanin/GMAP- and NPY-like immunoreactivities in locus coeruleus and noradrenergic nerve terminals in the hippocampal formation and cortex with notes on the galanin-R1 and -R2 receptors. J Comp Neurol 392(2):227–251

    CAS  PubMed  Google Scholar 

  43. Zhang L et al (2020) VGLUT-VGAT expression delineates functionally specialised populations of vasopressin-containing neurones including a glutamatergic perforant path-projecting cell group to the hippocampus in rat and mouse brain. J Neuroendocrinol 32(4):e12831

    CAS  PubMed  Google Scholar 

  44. Somogyi P et al (1984) Different populations of GABAergic neurons in the visual cortex and hippocampus of cat contain somatostatin- or cholecystokinin-immunoreactive material. J Neurosci 4(10):2590–2603

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Hendry SH et al (1984) Neuropeptide-containing neurons of the cerebral cortex are also GABAergic. Proc Natl Acad Sci USA 81(20):6526–6530

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Jones EG, Hendry SHC (1986) Peptide-containing neurons of the primate cerebral cortex. In: Martin JB, Barchas JD (eds) Neuropeptides in neurologic and psychiatric disease. Raven Press, New York, pp 163–178

    Google Scholar 

  47. Zhang L et al (2021) Behavioral role of PACAP reflects its selective distribution in glutamatergic and GABAergic neuronal subpopulations. Elife. https://doi.org/10.7554/eLife.61718

    Article  PubMed  PubMed Central  Google Scholar 

  48. Smith SJ et al (2019) Single-cell transcriptomic evidence for dense intracortical neuropeptide networks. Elife. https://doi.org/10.7554/eLife.47889

    Article  PubMed  PubMed Central  Google Scholar 

  49. Siedah NG et al (1990) cDNA sequence of two distinct pituitary proteins homologous to Kex2 and furin gene products: tissue-specific mRNAs encoding candidates for pro-hormone processing proteinases. DNA Cell Biol 9:415–424

    Google Scholar 

  50. Bloomquist BT, Eipper BA, Mains RE (1991) Prohormone-converting enzymes: regulation and evaluation of function using antisense RNA. Mol Endocrinol 5:2014–2024

    CAS  PubMed  Google Scholar 

  51. Eskeland NL et al (1996) Chromogranin A processing and secretion: specific role of endogenous and exogenous prohormone convertases in the regulated secretory pathway. J Clin Invest 98(1):148–156

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Seidah NG et al (1999) The subtilisin/kexin family of precursor convertases. Emphasis on PC1, PC2/7B2, POMC and the novel enzyme SKI-1. Ann NY Acad Sci 885:57–74

    CAS  PubMed  Google Scholar 

  53. Glombik MM, Gerdes H-H (2000) Signal-mediated sorting of neuropeptides and prohormones: secretory granule biogenesis revisited. Biochimie 82:315–326

    CAS  PubMed  Google Scholar 

  54. Pan H et al (2005) Neuropeptide processing profile in mice lacking prohormone convertase-1. Biochemistry 44(12):4939–4948

    CAS  PubMed  Google Scholar 

  55. Seidah NG et al (2008) The activation and physiological functions of the proprotein convertases. Int J Biochem Cell Biol 40(6–7):1111–1125

    CAS  PubMed  Google Scholar 

  56. Bloom FE (1973) Ultrastructural identification of catecholamine-containing central synaptic terminals. J Histochem Cytochem 21(4):333–348

    CAS  PubMed  Google Scholar 

  57. Bak IJ (1965) Electron microscopic observations in the substantia nigra of mouse during reserpine administration. Experientia 21(10):568–570

    CAS  PubMed  Google Scholar 

  58. Helle KB et al (1985) Osmotic properties of the chromogranins and relation to osmotic pressure in catecholamine storage granules. Acta Physiol Scand 123(1):21–33

    CAS  PubMed  Google Scholar 

  59. Eiden LE (1987) Is chromogranin a prohormone? Nature 325:301

    CAS  PubMed  Google Scholar 

  60. De Robertis E et al (1963) Acetylcholine and cholinacetylase content of synaptic vesicles. Science 140(3564):300–301

    CAS  Google Scholar 

  61. Whittaker VP, Michaelson IA, Kirkland RJ (1964) The separation of synaptic vesicles from nerve-ending particles ('synaptosomes’). Biochem J 90(2):293–303

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Zimmermann H, Whittaker VP (1977) Morphological and biochemical heterogeneity of cholinergic synaptic vesicles. Nature 267:633–635

    CAS  PubMed  Google Scholar 

  63. Defelipe J (2011) The evolution of the brain, the human nature of cortical circuits, and intellectual creativity. Front Neuroanat 5:29

    PubMed  PubMed Central  Google Scholar 

  64. Chantranupong L et al (2020) Rapid purification and metabolomic profiling of synaptic vesicles from mammalian brain. Elife. https://doi.org/10.7554/eLife.59699

    Article  PubMed  PubMed Central  Google Scholar 

  65. Tanaka R, Asaga H, Takeda M (1976) Nucleoside triphosphate and cation requirement for dopamine uptake by plain synaptic vesicles isolated from rat cerebrums. Brain Res 115(2):273–283

    CAS  PubMed  Google Scholar 

  66. Pickel VM, Nirenberg MJ, Milner TA (1996) Ultrastructural view of central catecholaminergic transmission: immunocytochemical localization of synthesiznng enzymes, transporters and receptors. J Neurocytol 25:843–856

    CAS  PubMed  Google Scholar 

  67. Nirenberg MJ et al (1995) The vesicular monoamine transporter 2 is present in small synaptic vesicles and preferentially localizes to large dense core vesicles in rat solitary tract nuclei. Proc Natl Acad Sci USA 92:8773–8777

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Doupe AJ, Patterson PH, Landis SC (1985) Small intensely fluorescent cells in culture: role of glucocorticoids and growth factors in their development and interconversions with other neural crest derivatives. J Neurosci 5:2143–2160

    CAS  PubMed  PubMed Central  Google Scholar 

  69. van den Pol AN (2012) Neuropeptide transmission in brain circuits. Neuron 76(1):98–115

    PubMed  PubMed Central  Google Scholar 

  70. Zucker RS (1996) Exocytosis: a molecular and physiological perspective. Neuron 17:1049–1055

    CAS  PubMed  Google Scholar 

  71. Lin RC, Scheller RH (2000) Mechanisms of synaptic vesicle exocytosis. Annu Rev Cell Dev Biol 16:19–49

    CAS  PubMed  Google Scholar 

  72. Neher E (2006) A comparison between exocytic control mechanisms in adrenal chromaffin cells and a glutamatergic synapse. Pflugers Arch 453(3):261–268

    CAS  PubMed  Google Scholar 

  73. Sudhof TC (2012) Calcium control of neurotransmitter release. Cold Spring Harb Perspect Biol 4(1):a011353

    PubMed  PubMed Central  Google Scholar 

  74. Neher E (1998) Vesicle pools and Ca2+ microdomains: new tools for understanding their roles in neurotransmitter release. Neuron 20(3):389–399

    CAS  PubMed  Google Scholar 

  75. Verhage M et al (1991) Differential release of amino acids, neuropeptides, and catecholamines from isolated nerve terminals. Neuron 6:517–524

    CAS  PubMed  Google Scholar 

  76. Olivos Ore L, Artalejo AR (2004) Intracellular Ca2+ microdomain-triggered exocytosis in neuroendocrine cells. Trends Neurosci 27(3):113–115

    CAS  PubMed  Google Scholar 

  77. Tandon A et al (1998) Differential regulation of exocytosis by calcium and CAPS in semi-intact synaptosomes. Neuron 21(1):147–154

    CAS  PubMed  Google Scholar 

  78. Persoon CM et al (2019) The RAB3-RIM pathway is essential for the release of neuromodulators. Neuron 104(6):1065–1080 (e12)

    CAS  PubMed  PubMed Central  Google Scholar 

  79. van Westen R et al (2021) Neuromodulator release in neurons requires two functionally redundant calcium sensors. Proc Natl Acad Sci USA. https://doi.org/10.1073/pnas.2012137118

    Article  PubMed  PubMed Central  Google Scholar 

  80. Svensson E et al (2018) General principles of neuronal co-transmission: insights from multiple model systems. Front Neural Circuits 12:117

    CAS  PubMed  Google Scholar 

  81. Vilim FS et al (2000) Peptide cotransmitter release from motorneuron B16 in aplysia californica: costorage, corelease, and functional implications. J Neurosci 20(5):2036–2042

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Edwards RH (1992) The transport of neurotransmitters into synaptic vesicles. Curr Opin Neurobiol 2:586–594

    CAS  PubMed  Google Scholar 

  83. Sobota JA et al (2010) Dynamics of peptidergic secretory granule transport are regulated by neuronal stimulation. BMC Neurosci 11:32

    PubMed  PubMed Central  Google Scholar 

  84. Winkler H, Fischer-Colbrie R (1998) Regulation of the biosynthesis of large dense-core vesicles in chromaffin cells and neurons. Cell Mol Neurobiol 18:193–209

    CAS  PubMed  Google Scholar 

  85. Persoon CM et al (2018) Pool size estimations for dense-core vesicles in mammalian CNS neurons. EMBO J. https://doi.org/10.15252/embj.201899672

    Article  PubMed  PubMed Central  Google Scholar 

  86. Eiden LE et al (1984) Nicotinic receptor stimulation activates both enkephalin release and biosynthesis in adrenal chromaffin cells. Nature 312:661–663

    CAS  PubMed  Google Scholar 

  87. Khan AM et al (2007) Catecholaminergic control of mitogen-activated protein kinase signaling in paraventricular neuroendocrine neurons in vivo and in vitro: a proposed role during glycemic challenges. J Neurosci 27(27):7344–7360

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Jiang SZ, Eiden LE (2016) Activation of the HPA axis and depression of feeding behavior induced by restraint stress are separately regulated by PACAPergic neurotransmission in the mouse. Stress 19(4):374–382

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Sheng M, Pak DTS (2000) Ligand-gated ion channel interactions with cytoskeletal and signaling proteins. Annu Rev Physiol 62:755–778

    CAS  PubMed  Google Scholar 

  90. Ferraguti F, Shigemoto R (2006) Metabotropic glutamate receptors. Cell Tissue Res 326(2):483–504

    CAS  PubMed  Google Scholar 

  91. Gudermann T, Schöneberg T, Schultz G (1997) Functional and structural complexity of signal transduction via G-protein-coupled receptors. Annu Rev Neurosci 20:399–427

    CAS  PubMed  Google Scholar 

  92. Kandel ER (2001) The molecular biology of memory storage: a dialogue between genes and synapses. Science 294:1030–1038

    CAS  PubMed  Google Scholar 

  93. Neves SR, Ram PT, Iyengar R (2002) G protein pathways. Science 296(5573):1636–1639

    CAS  PubMed  Google Scholar 

  94. Stroth N et al (2013) PACAP controls adrenomedullary catecholamine secretion and expression of catecholamine biosynthetic enzymes at high splanchnic nerve firing rates characteristic of stress transduction in male mice. Endocrinology 154(1):330–339

    CAS  PubMed  Google Scholar 

  95. Nusbaum MP, Blitz DM, Marder E (2017) Functional consequences of neuropeptide and small-molecule co-transmission. Nat Rev Neurosci 18(7):389–403

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Adamantidis AR et al (2007) Neural substrates of awakening probed with optogenetic control of hypocretin neurons. Nature 450(7168):420–424

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Karhula T et al (1990) Immunohistochemical localization of 5-hydroxytryptamine, histamine and histidine decarboxylase in the rat major pelvic and coeliac-superior mesenteric ganglion. J Auton Nerv Syst 31(2):91–99

    CAS  PubMed  Google Scholar 

  98. Bruns D et al (2000) Quantal release of serotonin. Neuron 28:205–220

    CAS  PubMed  Google Scholar 

  99. Whissell PD, Tohyama S, Martin LJ (2016) The use of DREADDs to deconstruct behavior. Front Genet 7:70

    PubMed  PubMed Central  Google Scholar 

  100. Gomez JL et al (2017) Chemogenetics revealed: DREADD occupancy and activation via converted clozapine. Science 357(6350):503–507

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Smith KS et al (2016) DREADDS: use and application in behavioral neuroscience. Behav Neurosci 130(2):137–155

    PubMed  PubMed Central  Google Scholar 

  102. Armbruster BN et al (2007) Evolving the lock to fit the key to create a family of G protein-coupled receptors potently activated by an inert ligand. Proc Natl Acad Sci USA 104(12):5163–5168

    PubMed  PubMed Central  Google Scholar 

  103. Vardy E et al (2015) A new DREADD facilitates the multiplexed chemogenetic interrogation of behavior. Neuron 86(4):936–946

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Zhu H, Roth BL (2014) Silencing synapses with DREADDs. Neuron 82(4): 723–725

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Ferguson SM et al (2013) Direct-pathway striatal neurons regulate the retention of decision-making strategies. J Neurosci 33(28):11668–11676

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Farrell MS et al (2013) A Galphas DREADD mouse for selective modulation of cAMP production in striatopallidal neurons. Neuropsychopharmacology 38(5):854–862

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Zhu H, Roth BL (2014) DREADD: a chemogenetic GPCR signaling platform. Int J Neuropsychopharmacol 18(1):pyu007

    PubMed  PubMed Central  Google Scholar 

  108. Chapman-Morales A et al. (2021) PlCE activity is essential for PACAP-stimulated secretion from chromaffin cells. In: 65th Biophysical Society Annual Meeting Ferbruary 22–26

  109. Smith CB, Eiden LE (2012) Is PACAP the major neurotransmitter for stress transduction at the adrenomedullary synapse? J Mol Neurosci 48:403–412

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Pisegna JR, Wank SA (1996) Cloning and characterization of the signal transduction of four splice variants of the human pituitary adenylate cyclase activating polypeptide receptor. Evidence for dual coupling to adenylate cyclase and phospholipase C. J Biol Chem 271(29):17267–17274

    CAS  PubMed  Google Scholar 

  111. Spengler D et al (1993) Differential signal transduction by five splice variants of the PACAP receptor. Nature 365:170–175

    CAS  PubMed  Google Scholar 

  112. Grund T et al (2019) Chemogenetic activation of oxytocin neurons: Temporal dynamics, hormonal release, and behavioral consequences. Psychoneuroendocrinology 106:77–84

    CAS  PubMed  Google Scholar 

  113. Grinevich V, Ludwig M (2021) The multiple faces of the oxytocin and vasopressin systems in the brain. J Neuroendocrinol 33(11):e13004

    CAS  PubMed  Google Scholar 

  114. Zhang L et al (2022) Fine chemo-anatomy of hypothalamic magnocellular vasopressinergic system with an emphasis on ascending connections for behavioural adaptation. In: Grinevich V, Dobolyi Á (eds) Neuroanatomy of neuroendocrine systems. Springer Nature, Switzerland, pp 167–196

    Google Scholar 

  115. Zhang L, Hernandez VS (2013) Synaptic innervation to rat hippocampus by vasopressin-immuno-positive fibres from the hypothalamic supraoptic and paraventricular nuclei. Neuroscience 228:139–162

    CAS  PubMed  Google Scholar 

  116. Cui Z, Gerfen CR, Young WS 3rd (2013) Hypothalamic and other connections with dorsal CA2 area of the mouse hippocampus. J Comp Neurol 521(8):1844–1866

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Ziegler DR, Cullinan WE, Herman JP (2002) Distribution of vesicular glutamate transporter mRNA in rat hypothalamus. J Comp Neurol 448(3):217–229

    CAS  PubMed  Google Scholar 

  118. Hrabovszky E et al (2006) Localization and osmotic regulation of vesicular glutamate transporter-2 in magnocellular neurons of the rat hypothalamus. Neurochem Int 48(8):753–761

    CAS  PubMed  Google Scholar 

  119. Hernandez VS et al (2016) Hypothalamic vasopressinergic projections innervate central amygdala GABAergic neurons: implications for anxiety and stress coping. Front Neural Circuits. https://doi.org/10.3389/fncir.2016.00092

    Article  PubMed  PubMed Central  Google Scholar 

  120. Hernandez VS et al (2015) Extra-neurohypophyseal axonal projections from individual vasopressin-containing magnocellular neurons in rat hypothalamus. Front Neuroanat 9:130

    PubMed  PubMed Central  Google Scholar 

  121. Zhang L et al (2016) Thirst is associated with suppression of habenula output and active stress coping: Is there a role for a non-canonical vasopressin-glutamate pathway? Front Neural Circuits 10:13

    PubMed  PubMed Central  Google Scholar 

  122. Hernandez-Perez OR et al (2019) A synaptically connected hypothalamic magnocellular vasopressin-locus coeruleus neuronal circuit and its plasticity in response to emotional and physiological stress. Front Neurosci 13:196

    PubMed  PubMed Central  Google Scholar 

  123. Zhang L et al (2018) A GABAergic cell type in the lateral habenula links hypothalamic homeostatic and midbrain motivation circuits with sex steroid signaling. Transl Psychiatry 8(1):50

    PubMed  PubMed Central  Google Scholar 

  124. Brown CH et al (2007) Somatodendritic dynorphin release: orchestrating activity patterns of vasopressin neurons. Biochem Soc Trans 35(Pt 5):1236–1242

    CAS  PubMed  Google Scholar 

  125. Brown CH et al (2020) Somato-dendritic vasopressin and oxytocin secretion in endocrine and autonomic regulation. J Neuroendocrinol 32(6):e12856

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Sherwood NM, Krueckl SL, McRory JE (2000) The origin and function of the pituitary adenylate cyclase-activating polypeptide (PACAP)/glucagon superfamily. Endocrine Rev 21:619–670

    CAS  Google Scholar 

  127. Arimura A (1992) Pituitary adenylate cyclase-activating polypeptide (PACAP): discovery and current status of research. Regul Peptides 37:287–303

    CAS  Google Scholar 

  128. Hamelink C et al (2002) Pituitary adenylate cyclase activating polypeptide is a sympathoadrenal neurotransmitter involved in catecholamine regulation and glucohomeostasis. Proc Natl Acad Sci USA 99:461–466

    CAS  PubMed  Google Scholar 

  129. Hamelink C, Weihe E, Eiden LE (2003) PACAP: an ‘emergency response’ co-transmitter in the adrenal medulla. Pituitary adenylate cyclase-activating polypeptide. Springer, New York, pp 227–250

    Google Scholar 

  130. Guerineau NC (2019) Cholinergic and peptidergic neurotransmission in the adrenal medulla: a dynamic control of stimulus-secretion coupling. IUBMB Life 72(4):553–567

    PubMed  Google Scholar 

  131. Przywara DA et al (1996) A noncholinergic transmitter, pituitary adenylate cyclase activating polypeptide, utilizes a novel mechanism to evoke catecholamine secretion in rat adrenal chromaffin cells. J Biol Chem 271:10545–10550

    CAS  PubMed  Google Scholar 

  132. Malhotra RK, Wakade TD, Wakade AR (1988) Comparison of secretion of catecholamines from the rat adrenal medulla during continuous exposure to nicotine, muscarine or excess K. Neuroscience 26:313–320

    CAS  PubMed  Google Scholar 

  133. Stroth N, Eiden LE (2010) Stress hormone synthesis in mouse hypothalamus and adrenal gland triggered by restraint is dependent on pituitary adenylate cyclase-activating polypeptide signaling. Neuroscience 165:1025–1030

    CAS  PubMed  Google Scholar 

  134. Nankova BB et al (2000) Fos-related antigen 2: potential mediator of the transcriptional activation in rat adrenal medulla evoked by repeated immobilization stress. J Neurosci 20(15):5647–5653

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Liu X et al (2008) Identifying the stress transcriptome in the adrenal medulla following acute and repeated immobilization. Ann NY Acad Sci 1148:1–28

    CAS  PubMed  Google Scholar 

  136. Emery AC, Eiden LE (2012) Signaling through the neuropeptide GPCR PAC1 induces neuritogenesis via a single linear cAMP- and ERK-dependent pathway using a novel cAMP sensor. FASEB J 26:3199–3211

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Emery A et al (2013) GPCR-Gs signaling to ERK is controlled by the cAMP-sensing guanine nucleotide exchange factor NCS/Rapgef2 in neuronal and endocrine cells. Sci Signal. https://doi.org/10.1126/scisignal.2003993

    Article  PubMed  PubMed Central  Google Scholar 

  138. Kuri BA, Chan SA, Smith CB (2009) PACAP regulates immediate catecholamine release from adrenal chromaffin cells in an activity-dependent manner through a protein kinase C-dependent pathway. J Neurochem 110(4):1214–1225

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Johnson GC et al (2019) Parallel signaling pathways of pituitary adenylate cyclase activating polypeptide (PACAP) regulate several intrinsic ion channels. Ann NY Acad Sci 1455:105–112

    CAS  PubMed  Google Scholar 

  140. Parsons RL, May V (2018) PACAP-induced PAC1 receptor internalization and recruitment of endosomal signaling regulate cardiac neuron excitability. J Mol Neurosci 68(3):340–347

    PubMed  PubMed Central  Google Scholar 

  141. May V et al (1998) Mechanisms of pituitary adenylate cyclase activating polypeptide (PACAP)-induced depolarization of sympathetic superior cervical ganglion (SCG) neurons. Ann NY Acad Sci 865:164–175

    CAS  PubMed  Google Scholar 

  142. Lehmann ML et al (2013) PACAP-deficient mice show attenuated corticosterone secretion and fail to develop depressive behavior during chronic social defeat stress. Psychoneuroendocrinology 38:702–715

    CAS  PubMed  Google Scholar 

  143. Tsukiyama N et al (2011) PACAP centrally mediates emotional stress-induced corticosterone responses in mice. Stress 14:368–375

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Hrvatin S et al (2020) Neurons that regulate mouse torpor. Nature 583(7814):115–121

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Krashes MJ et al (2014) An excitatory paraventricular nucleus to AgRP neuron circuit that drives hunger. Nature 507(7491):238–242

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Khodai T et al (2018) PACAP neurons in the ventromedial hypothalamic nucleus are glucose inhibited and their selective activation induces hyperglycaemia. Front Endocrinol (Lausanne) 9:632

    Google Scholar 

  147. Hammack SE, May V (2015) Pituitary adenylate cyclase activating polypeptide in stress-related disorders: data convergence from animal and human studies. Biol Psychiatry 78:167–177

    CAS  PubMed  Google Scholar 

  148. Boucher MN et al (2021) PACAP orchestration of stress-related responses in neural circuits. Peptides 142:170554

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Jiang SZ, Eiden LE (2016) PACAPergic synaptic signaling and circuitry mediating mammalian responses to psychogenic and systemic stressors. In: Tamas DRA (ed) Pituitary adenylate cyclase-activating polypeptide-PACAP. Springer International, Switzerland

    Google Scholar 

  150. Stroth N et al (2011) Pituitary adenylate cyclase-activating polypeptide (PACAP) controls stimulus-transcription coupling in the hypothalamic-pituitary-adrenal axis to mediate sustained hormone secretion during stress. J Neuroendocrinol 23:944–955

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Jiang SZ and Eiden LE (2021) Regiospecific knockout of PACAP expression and its impact on endocrine and behavioral consequences of restraint stress. Soc Neurosci (P103.09)

  152. Ma S et al (2018) Dual-transmitter systems regulating arousal, attention, learning and memory. Neurosci Biobehav Rev 85:21–33

    CAS  PubMed  Google Scholar 

  153. Bowers ME, Choi DC, Ressler KJ (2012) Neuropeptide regulation of fear and anxiety: Implications of cholecystokinin, endogenous opioids, and neuropeptide Y. Physiol Behav 107(5):699–710

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Colmers WF, Bleakman D (1994) Effects of neuropeptide Y on the electrical properties of neurons. Trends Neurosci 17(9):373–379

    CAS  PubMed  Google Scholar 

  155. Comeras LB et al (2021) NPY released from GABA neurons of the dentate gyrus specially reduces contextual fear without affecting cued or trace fear. Front Synaptic Neurosci 13:635726

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Enman NM et al (2015) Targeting the neuropeptide Y system in stress-related psychiatric disorders. Neurobiology of Stress 1:33–43

    PubMed  Google Scholar 

  157. Guillaumin MCC, Burdakov D (2021) Neuropeptides as primary mediators of brain circuit connectivity. Front Neurosci 15:644313

    PubMed  PubMed Central  Google Scholar 

  158. Barbier M et al (2020) A basal ganglia-like cortical-amygdalar-hypothalamic network mediates feeding behavior. Proc Natl Acad Sci USA 117(27):15967–15976

    CAS  PubMed  PubMed Central  Google Scholar 

  159. Ma S et al (2017) Distribution, physiology and pharmacology of relaxin-3/RXFP3 systems in brain. Br J Pharmacol 174(10):1034–1048

    CAS  PubMed  Google Scholar 

  160. Walker LC et al (2017) Nucleus incertus corticotrophin-releasing factor 1 receptor signalling regulates alcohol seeking in rats. Addict Biol 22(6):1641–1654

    CAS  PubMed  Google Scholar 

  161. Kumar JR et al (2017) Relaxin’ the brain: a case for targeting the nucleus incertus network and relaxin-3/RXFP3 system in neuropsychiatric disorders. Br J Pharmacol 174(10):1061–1076

    CAS  PubMed  Google Scholar 

  162. Albert-Gasco H et al (2019) Central relaxin-3 receptor (RXFP3) activation impairs social recognition and modulates ERK-phosphorylation in specific GABAergic amygdala neurons. Brain Struct Funct 224(1):453–469

    CAS  PubMed  Google Scholar 

  163. Furuya WI et al (2020) Relaxin-3 receptor (RXFP3) activation in the nucleus of the solitary tract modulates respiratory rate and the arterial chemoreceptor reflex in rat. Respir Physiol Neurobiol 271:103310

    CAS  PubMed  Google Scholar 

  164. Schafer H et al (1996) Pituitary adenylate-cyclase-activating polypeptide stimulates proto-oncogene expression and activates the AP-1 (c-Fos/c-Jun) transcription factor in AR4-2J pancreatic carcinoma cells. Eur J Biochem 242(3):467–476

    CAS  PubMed  Google Scholar 

  165. Rytova V et al (2019) Chronic activation of the relaxin-3 receptor on GABA neurons in rat ventral hippocampus promotes anxiety and social avoidance. Hippocampus 29(10):905–920

    CAS  PubMed  Google Scholar 

  166. Kim T et al (2001) Chromogranin A, an “on/off” switch controlling dense-core secretory granule biogenesis. Cell 106(4):499–509

    CAS  PubMed  Google Scholar 

  167. Kirchmair R et al (1993) Secretoneurin-a neuropeptide generated in brain, adrenal medulla and other endocrine tissues by proteolytic processing of secretogranin II (chromogranin C). Neuroscience 53:359–365

    CAS  PubMed  Google Scholar 

  168. Wiedermann CJ (2000) Secretoneurin: a functional neuropeptide in health and disease. Peptides 21(8):1289–1298

    CAS  PubMed  Google Scholar 

  169. Miyazaki T et al (2010) Cellular expression and subcellular localization of secretogranin II in the mouse hippocampus and cerebellum. Eur J Neurosci 33(1):82–94

    PubMed  Google Scholar 

  170. Yap EL et al (2021) Bidirectional perisomatic inhibitory plasticity of a Fos neuronal network. Nature 590(7844):115–121

    CAS  PubMed  Google Scholar 

  171. Kim JK et al (2011) Phospholipase C-eta1 is activated by intracellular Ca(2+) mobilization and enhances GPCRs/PLC/Ca(2+) signaling. Cell Signal 23(6):1022–1029

    CAS  PubMed  Google Scholar 

  172. Pittman QJ, Siggins GR (1981) Somatostatin hyperpolarizes hippocampal pyramidal cells in vitro. Brain Res 221:402–408

    CAS  PubMed  Google Scholar 

  173. Zhang L et al (2022) Vasopressin acts as a synapse organizer in limbic regions by boosting PSD95 and GluA1 expression. J Neuroendocrinol. https://doi.org/10.1111/jne.13164

    Article  PubMed  Google Scholar 

  174. Hadcock JR, Strnad J (1996) Somatostatin receptor coupling to G proteins. Methods Neurosci 29:120–132

    CAS  Google Scholar 

  175. Schweitzer P, Madamba SG, Siggins GR (1998) Somatostatin increases a voltage-insensitive K+ conductance in rat CA1 hippocampal neurons. J Neurophysiol 79(3):1230–1238

    CAS  PubMed  Google Scholar 

  176. Chen C et al (1990) Somatostatin increases voltage-dependent potassium currents in rat somatotrophs. Am J Physiol 259(6 Pt 1):C854–C861

    CAS  PubMed  Google Scholar 

  177. Varga AG et al (2020) Differential impact of two critical respiratory centres in opioid-induced respiratory depression in awake mice. J Physiol 598(1):189–205

    CAS  PubMed  Google Scholar 

  178. Smith JC et al (1991) Pre-Botzinger complex: a brainstem region that may generate respiratory rhythm in mammals. Science 254(5032):726–729

    CAS  PubMed  PubMed Central  Google Scholar 

  179. Ikeda K et al (2017) The respiratory control mechanisms in the brainstem and spinal cord: integrative views of the neuroanatomy and neurophysiology. J Physiol Sci 67(1):45–62

    PubMed  Google Scholar 

  180. Bachmutsky I et al (2020) Opioids depress breathing through two small brainstem sites. Elife. https://doi.org/10.7554/eLife.52694

    Article  PubMed  PubMed Central  Google Scholar 

  181. Alexander SPH et al (2016) Concise guide to pharmacology 2015/16. Br J Pharmacol 172(24):6024–6109

    Google Scholar 

  182. Bean BP (1989) Neurotransmitter inhibition of neuronal calcium currents by changes in channel voltage dependence. Nature 340(6229):153–156

    CAS  PubMed  Google Scholar 

  183. Bleakman D et al (1992) Investigations into neuropeptide Y-mediated presynaptic inhibition in cultured hippocampal neurones of the rat. Br J Pharmacol 107(2):334–340

    CAS  PubMed  PubMed Central  Google Scholar 

  184. Ledri LN et al (2016) Translational approach for gene therapy in epilepsy: model system and unilateral overexpression of neuropeptide Y and Y2 receptors. Neurobiol Dis 86:52–61

    PubMed  Google Scholar 

  185. Hokfelt T, Tatemoto K (2008) Galanin–25 years with a multitalented neuropeptide. Cell Mol Life Sci 65(12):1793–1795

    CAS  PubMed  Google Scholar 

  186. Pisegna JR, Moody TW, Wank SA (1996) Differential signaling and immediate-early gene activation by four splice variants of the human pituitary adenylate cyclase-activating polypeptide receptor (hPACAP-R). Ann NY Acad Sci 805:54–64 (discussion 64–66)

    CAS  PubMed  Google Scholar 

  187. Journot L et al (1995) Differential signal transduction by six splice variants of the pituitary adenylate cyclase-activating peptide (PACAP) receptor. Biochem Soc Trans 23:133–137

    CAS  PubMed  Google Scholar 

  188. Johnson GC et al (2020) Pituitary adenylate cyclase-activating polypeptide-induced PAC1 receptor internalization and recruitment of MEK/ERK signaling enhance excitability of dentate gyrus granule cells. Am J Physiol Cell Physiol 318(5):C870–C878

    CAS  PubMed  PubMed Central  Google Scholar 

  189. Johnson GC et al (2020) The role of pituitary adenylate cyclase-activating polypeptide (PACAP) signaling in the hippocampal dentate gyrus. Front Cell Neurosci 14:111

    CAS  PubMed  PubMed Central  Google Scholar 

  190. May V et al (2021) PAC1 Receptor Internalization and Endosomal MEK/ERK Activation Is Essential for PACAP-Mediated Neuronal Excitability. J Mol Neurosci 71(8):1536–1542

    CAS  PubMed  PubMed Central  Google Scholar 

  191. Macdonald DS et al (2005) Modulation of NMDA receptors by pituitary adenylate cyclase activating peptide in CA1 neurons requires G alpha q, protein kinase C, and activation of Src. J Neurosci 25(49):11374–11384

    CAS  PubMed  PubMed Central  Google Scholar 

  192. MacDonald JF, Jackson MF, Beazely MA (2007) G protein-coupled receptors control NMDARs and metaplasticity in the hippocampus. Biochim Biophys Acta 1768(4):941–951

    CAS  PubMed  Google Scholar 

  193. Costa L et al (2009) Modulation of AMPA receptor-mediated ion current by pituitary adenylate cyclase-activating polypeptide (PACAP) in CA1 pyramidal neurons from rat hippocampus. Hippocampus 19:99–109

    CAS  PubMed  Google Scholar 

  194. Trepanier CH, Jackson MF, Macdonald JF (2012) Regulation of NMDA receptors by the tyrosine kinase Fyn. FEBS J 279(1):12–19

    CAS  PubMed  Google Scholar 

  195. Amaral DG, Witter MP (1989) The three-dimensional organization of the hippocampal formation: a review of anatomical data. Neuroscience 31(3):571–591

    CAS  PubMed  Google Scholar 

  196. Haglund L, Swanson LW, Kohler C (1984) The projection of the supramammillary nucleus to the hippocampal formation: an immunohistochemical and anterograde transport study with the lectin PHA-L in the rat. J Comp Neurol 229(2):171–185

    CAS  PubMed  Google Scholar 

  197. Vertes RP (1992) Major diencephalic inputs to the hippocampus: supramammillary nucleus and nucleusreuniens. Circuitry and function. Prog Brain Res 219:121–144

    Google Scholar 

  198. Ito M et al (2009) Three-dimensional distribution of Fos-positive neurons in the supramammillary nucleus of the rat exposed to novel environment. Neurosci Res 64:397–402

    PubMed  Google Scholar 

  199. Thompson CL et al (2008) Genomic anatomy of the hippocampus. Neuron 60(6):1010–1021

    CAS  PubMed  Google Scholar 

  200. Scharfman HE (2007) The CA3 “backprojection” to the dentate gyrus. Prog Brain Res 163:627–637

    PubMed  PubMed Central  Google Scholar 

  201. Hammack SE, Mania I, Rainnie DG (2007) Differential expression of intrinsic membrane currents in defined cell types of the anterolateral bed nucleus of the stria terminalis. J Neurophysiol 98(2):638–656

    CAS  PubMed  Google Scholar 

  202. Daniel SE et al (2019) Chronic stress induces cell type-selective transcriptomic and electrophysiological changes in the bed nucleus of the stria terminalis. Neuropharmacology 150:80–90

    CAS  PubMed  PubMed Central  Google Scholar 

  203. Cho JH et al (2012) Pituitary adenylate cyclase-activating polypeptide induces postsynaptically expressed potentiation in the intra-amygdala circuit. J Neurosci 32(41):14165–14177

    CAS  PubMed  PubMed Central  Google Scholar 

  204. Caruana DA, Alexander GM, Dudek SM (2012) New insights into the regulation of synaptic plasticity from an unexpected place: hippocampal area CA2. Learn Mem 19(9):391–400

    CAS  PubMed  PubMed Central  Google Scholar 

  205. Pagani JH et al (2014) Role of the vasopressin 1b receptor in rodent aggressive behavior and synaptic plasticity in hippocampal area CA2. Mol Psychiatry 20(4):490–499

    PubMed  PubMed Central  Google Scholar 

  206. Tzakis N, Holahan MR (2019) Social memory and the role of the hippocampal CA2 region. Front Behav Neurosci 13:233

    CAS  PubMed  PubMed Central  Google Scholar 

  207. Carstens KE, Dudek SM (2019) Regulation of synaptic plasticity in hippocampal area CA2. Curr Opin Neurobiol 54:194–199

    CAS  PubMed  Google Scholar 

  208. Li Y, van den Pol AN (2006) Differential target-dependent actions of coexpressed inhibitory dynorphin and excitatory hypocretin/orexin neuropeptides. J Neurosci 26(50):13037–13047

    CAS  PubMed  PubMed Central  Google Scholar 

  209. Henry DJ et al (1995) Kappa-opioid receptors couple to inwardly rectifying potassium channels when coexpressed by Xenopus oocytes. Mol Pharmacol 47(3):551–557

    CAS  PubMed  Google Scholar 

  210. Macosko EZ et al (2009) A hub-and-spoke circuit drives pheromone attraction and social behaviour in C. elegans. Nature 458(7242):1171–1175

    CAS  PubMed  PubMed Central  Google Scholar 

  211. Kohl J et al (2018) Functional circuit architecture underlying parental behaviour. Nature 556(7701):326–331

    CAS  PubMed  PubMed Central  Google Scholar 

  212. Bakalar D et al (2022) Relationships between constitutive and acute gene regulation, and physiological and behavioral responses, mediated by the neuropeptide PACAP. Psychoneuroendocrinology 135:1054478

    Google Scholar 

  213. Leonzino M et al (2016) The timing of the excitatory-to-inhibitory GABA switch is regulated by the oxytocin receptor via KCC2. Cell Rep 15(1):96–103

    CAS  PubMed  PubMed Central  Google Scholar 

  214. Tyzio R et al (2006) Maternal oxytocin triggers a transient inhibitory switch in GABA signaling in the fetal brain during delivery. Science 314(5806):1788–1792

    CAS  PubMed  Google Scholar 

  215. Birnie MT et al (2020) Plasticity of the reward circuitry after early-life adversity: mechanisms and significance. Biol Psychiatry 87(10):875–884

    CAS  PubMed  Google Scholar 

  216. Satzler K et al (2002) Three-dimensional reconstruction of a calyx of Held and its postsynaptic principal neuron in the medial nucleus of the trapezoid body. J Neurosci 22(24):10567–10579

    CAS  PubMed  PubMed Central  Google Scholar 

  217. Freund TF, Katona I (2007) Perisomatic inhibition. Neuron 56(1):33–42

    CAS  PubMed  Google Scholar 

  218. Lee SY, Soltesz I (2011) Cholecystokinin: a multi-functional molecular switch of neuronal circuits. Dev Neurobiol 71(1):83–91

    CAS  PubMed  PubMed Central  Google Scholar 

  219. Lovett-Barron M et al (2012) Regulation of neuronal input transformations by tunable dendritic inhibition. Nat Neurosci 15(3):423–430 (S1–3)

    CAS  PubMed  Google Scholar 

  220. Shimada S et al (1989) Light and electron microscopic studies of calcitonin gene-related peptide-like immunoreactive terminals in the central nucleus of the amygdala and the bed nucleus of the stria terminalis of the rat. Exp Brain Res 77(1):217–220

    CAS  PubMed  Google Scholar 

  221. Missig G et al (2017) Parabrachial pituitary adenylate cyclase-activating polypeptide activation of amygdala endosomal extracellular signal-regulated kinase signaling regulates the emotional component of pain. Biol Psychiatry 81(8):671–682

    CAS  PubMed  Google Scholar 

  222. Zhang L, Hernandez VS, Giraldo DM (2021) Kollliker-Fuse nucleus in the hindbrain parabrachial complex sends long-range glutamatergic (VGluT1/2) projections containing PACAP, CGRP and nerotensin, to identified GABAergic neurons in the extended amygdala during pain processing. Soc Neurosci 2021:P609.06

    Google Scholar 

  223. Borst JG, Soria van Hoeve J (2012) The calyx of Held synapse: from model synapse to auditory relay. Annu Rev Physiol 74:199–224

    CAS  PubMed  Google Scholar 

  224. Tobin VA et al (2008) The effects of apelin on the electrical activity of hypothalamic magnocellular vasopressin and oxytocin neurons and somatodendritic Peptide release. Endocrinology 149(12):6136–6145

    CAS  PubMed  Google Scholar 

  225. Wildenberg G et al (2021) Partial connectomes of labeled dopaminergic circuits reveal non-synaptic communication and axonal remodeling after exposure to cocaine. Elife. https://doi.org/10.7554/eLife.71981

    Article  PubMed  PubMed Central  Google Scholar 

  226. Salio C et al (2006) Neuropeptides as synaptic transmitters. Cell Tissue Res 326(2):583–598

    CAS  PubMed  Google Scholar 

  227. Leng G, Leng RI, Maclean S (2019) The vasopressin−memory hypothesis: a citation network analysis of a debate. Ann NY Acad Sci 1455:126–140

    PubMed  Google Scholar 

  228. Ferrini F et al (2009) Ghrelin in central neurons. Curr Neuropharmacol 7(1):37–49

    CAS  PubMed  PubMed Central  Google Scholar 

  229. Giacobini E (1990) The cholinergic system in Alzheimer disease. In: Aquilonius S-M, Gillberg P-G (eds) Progress in brain research. Elsevier Science Publishers, Amsterdam, pp 321–332

    Google Scholar 

  230. Schone C et al (2014) Coreleased orexin and glutamate evoke nonredundant spike outputs and computations in histamine neurons. Cell Rep 7(3):697–704

    CAS  PubMed  PubMed Central  Google Scholar 

  231. Hannibal J et al (1998) Pituitary adenylate cyclase activating peptide (PACAP) in the retinohypothalamic tract: a daytime regulator of the biological clock. Ann NY Acad Sci 865:197–206

    CAS  PubMed  Google Scholar 

  232. Chen D et al (1999) Pituitary adenylyl cyclase-activating peptide: a pivotal modulator of glutamatergic regulation of the suprachiasmatic circadian clock. Proc Natl Acad Sci USA 96:13468–13473

    CAS  PubMed  PubMed Central  Google Scholar 

  233. Beaule C et al (2009) Temporally restricted role of retinal PACAP: integration of the phase-advancing light signal to the SCN. J Biol Rhythms 24(2):126–134

    CAS  PubMed  PubMed Central  Google Scholar 

  234. Colwell CS et al (2004) Selective deficits in the circadian light response in mice lacking PACAP. Am J Physiol Regul Integr Comp Physiol 287(5):R1194–R1201

    CAS  PubMed  Google Scholar 

  235. Lindberg PT et al (2019) Pituitary adenylate cyclase-activating peptide (PACAP)-glutamate co-transmission drives circadian phase-advancing responses to intrinsically photosensitive retinal ganglion cell projections by suprachiasmatic nucleus. Front Neurosci 13:1281

    PubMed  PubMed Central  Google Scholar 

  236. Kaelberer MM et al (2018) A gut-brain neural circuit for nutrient sensory transduction. Science. https://doi.org/10.1126/science.aat5236

    Article  PubMed  PubMed Central  Google Scholar 

  237. Hokfelt T et al (1991) Distribution patterns of CCK and CCK mRNA in some neuronal and non-neuronal tissues. Neuropeptides 19(Suppl):31–43

    PubMed  Google Scholar 

  238. Hokfelt T et al (1980) Evidence for coexistence of dopamine and CCK in meso-limbic neurones. Nature 285(5765):476–478

    CAS  PubMed  Google Scholar 

  239. Omiya Y et al (2015) VGluT3-expressing CCK-positive basket cells construct invaginating synapses enriched with endocannabinoid signaling proteins in particular cortical and cortex-like amygdaloid regions of mouse brains. J Neurosci 35(10):4215–4228

    CAS  PubMed  PubMed Central  Google Scholar 

  240. Zeng Q et al (2020) Gastrin, cholecystokinin, signaling, and biological activities in cellular processes. Front Endocrinol (Lausanne) 11:112

    Google Scholar 

  241. Crawley JH (1985) Behavioral evidence for cholecystokinin modulation of dopamine in the mesolimbic pathway. Prog Clin Biol Res 192:131–138

    CAS  PubMed  Google Scholar 

  242. Ballaz S (2017) The unappreciated roles of the cholecystokinin receptor CCK(1) in brain functioning. Rev Neurosci 28(6):573–585

    CAS  PubMed  Google Scholar 

  243. Warfvinge K, Edvinsson L (2019) Distribution of CGRP and CGRP receptor components in the rat brain. Cephalalgia 39(3):342–353

    PubMed  Google Scholar 

  244. Calka J et al (2009) Evidence for coexistence of choline acetyltransferase (ChAT)- and calcitonin gene-related peptide (CGRP)-immunoreactivity in the thoracolumbar and sacral spinal cord neurons of the pig. Pol J Vet Sci 12(1):61–67

    CAS  PubMed  Google Scholar 

  245. Cottrell GS (2019) CGRP receptor signalling pathways. In: Brain SD, Geppetti P (eds) Calcitonin gene-related peptide (CGRP) mechanisms: focus on migraine. Springer International Publishing, Cham, pp 37–64

    Google Scholar 

  246. Yan XX et al (1998) Corticotropin-releasing hormone (CRH)-containing neurons in the immature rat hippocampal formation: light and electron microscopic features and colocalization with glutamate decarboxylase and parvalbumin. Hippocampus 8(3):231–243

    CAS  PubMed  PubMed Central  Google Scholar 

  247. Wang Y et al (2021) Single-cell morphological characterization of CRH neurons throughout the whole mouse brain. BMC Biol 19(1):47

    CAS  PubMed  PubMed Central  Google Scholar 

  248. Brar B, Perrin MH, Vale WW (2003) Corticotropin-releasing hormone receptor signaling. In: Henry HL, Norman AW (eds) Encyclopedia of hormones. Academic Press, New York, pp 313–325

    Google Scholar 

  249. Capper-Loup C, Kaelin-Lang A (2008) Lateralization of dynorphin gene expression in the rat striatum. Neurosci Lett 447(2–3):106–108

    CAS  PubMed  Google Scholar 

  250. Baseer N et al (2012) Projection neurons in lamina III of the rat spinal cord are selectively innervated by local dynorphin-containing excitatory neurons. J Neurosci 32(34):11854–11863

    CAS  PubMed  PubMed Central  Google Scholar 

  251. Chiang MC et al (2020) Divergent neural pathways emanating from the lateral parabrachial nucleus mediate distinct components of the pain response. Neuron 106(6):927–939 (e5)

    CAS  PubMed  Google Scholar 

  252. Bruchas MR, Chavkin C (2010) Kinase cascades and ligand-directed signaling at the kappa opioid receptor. Psychopharmacology 210(2):137–147

    CAS  PubMed  PubMed Central  Google Scholar 

  253. Shuster SJ et al (2000) The kappa opioid receptor and dynorphin co-localize in vasopressin magnocellular neurosecretory neurons in guinea-pig hypothalamus. Neuroscience 96(2):373–383

    CAS  PubMed  Google Scholar 

  254. Steiner H, Gerfen CR (1998) Role of dynorphin and enkephalin in the regulation of striatal output pathways and behavior. Exp Brain Res 123(1–2):60–76

    CAS  PubMed  Google Scholar 

  255. Al-Hasani R, Bruchas MR (2011) Molecular mechanisms of opioid receptor-dependent signaling and behavior. Anesthesiology 115(6):1363–1381

    CAS  PubMed  Google Scholar 

  256. Cheung CC et al (2001) Distribution of galanin messenger RNA-expressing cells in murine brain and their regulation by leptin in regions of the hypothalamus. Neuroscience 103(2):423–432

    CAS  PubMed  Google Scholar 

  257. Merchenthaler I, Lopez FJ, Negro-Vilar A (1993) Anatomy and physiology of central galanin-containing pathways. Prog Neurobiol 40(6):711–769

    CAS  PubMed  Google Scholar 

  258. Merchenthaler I (2010) Galanin and the neuroendocrine axes. Exp Suppl 102:71–85

    CAS  PubMed  Google Scholar 

  259. Cravo RM et al (2011) Characterization of Kiss1 neurons using transgenic mouse models. Neuroscience 173:37–56

    CAS  PubMed  Google Scholar 

  260. Yin W et al (2015) Expression of vesicular glutamate transporter 2 (vGluT2) on large dense-core vesicles within GnRH neuroterminals of aging female rats. PLoS One 10(6):e0129633

    PubMed  PubMed Central  Google Scholar 

  261. Finch AR et al (2010) Trafficking and signalling of gonadotrophin-releasing hormone receptors: an automated imaging approach. Br J Pharmacol 159(4):751–760

    CAS  PubMed  Google Scholar 

  262. Romanelli RG et al (2004) Expression and function of gonadotropin-releasing hormone (GnRH) receptor in human olfactory GnRH-secreting neurons: an autocrine GnRH loop underlies neuronal migration. J Biol Chem 279(1):117–126

    CAS  PubMed  Google Scholar 

  263. Collin M et al (2003) Plasma membrane and vesicular glutamate transporter mRNAs/proteins in hypothalamic neurons that regulate body weight. Eur J Neurosci 18(5):1265–1278

    PubMed  Google Scholar 

  264. Hentges ST et al (2004) GABA release from proopiomelanocortin neurons. J Neurosci 24(7):1578–1583

    CAS  PubMed  PubMed Central  Google Scholar 

  265. Cone RD (2005) Anatomy and regulation of the central melanocortin system. Nat Neurosci 8(5):571–578

    CAS  PubMed  Google Scholar 

  266. Gutierrez-Mecinas M et al (2016) A quantitative study of neurochemically defined excitatory interneuron populations in laminae I-III of the mouse spinal cord. Mol Pain. https://doi.org/10.1177/1744806916629065

    Article  PubMed  PubMed Central  Google Scholar 

  267. Furutani N et al (2013) Neurotensin co-expressed in orexin-producing neurons in the lateral hypothalamus plays an important role in regulation of sleep/wakefulness states. PLoS One 8(4):e62391

    CAS  PubMed  PubMed Central  Google Scholar 

  268. Horvath TL et al (1997) Heterogeneity in the neuropeptide Y-containing neurons of the rat arcuate nucleus: GABAergic and non-GABAergic subpopulations. Brain Res 756(1–2):283–286

    CAS  PubMed  Google Scholar 

  269. Tong Q et al (2008) Synaptic release of GABA by AgRP neurons is required for normal regulation of energy balance. Nat Neurosci 11(9):998–1000

    CAS  PubMed  PubMed Central  Google Scholar 

  270. Xiao Q et al (2021) A new GABAergic somatostatin projection from the BNST onto accumbal parvalbumin neurons controls anxiety. Mol Psychiatry 26(9):4719–4741

    CAS  PubMed  Google Scholar 

  271. Szereda-Przestaszewska M, Kaczynska K (2020) Serotonin and substance P: Synergy or competition in the control of breathing. Auton Neurosci 225:102658

    CAS  PubMed  Google Scholar 

  272. Shigematsu N et al (2008) An immunohistochemical study on a unique colocalization relationship between substance P and GABA in the central nucleus of amygdala. Brain Res 1198:55–67

    CAS  PubMed  Google Scholar 

  273. Shah T, Dunning JL, Contet C (2022) At the heart of the interoception network: Influence of the parasubthalamic nucleus on autonomic functions and motivated behaviors. Neuropharmacology 204:108906

    CAS  PubMed  Google Scholar 

  274. Douglas SD, Leeman SE (2011) Neurokinin-1 receptor: functional significance in the immune system in reference to selected infections and inflammation. Ann NY Acad Sci 1217:83–95

    CAS  PubMed  Google Scholar 

  275. Malcangio M, Bowery NG (1999) Peptide autoreceptors: does an autoreceptor for substance P exist? Trends Pharmacol Sci 20(10):405–407

    CAS  PubMed  Google Scholar 

  276. Hrabovszky E et al (2005) Hypophysiotropic thyrotropin-releasing hormone and corticotropin-releasing hormone neurons of the rat contain vesicular glutamate transporter-2. Endocrinology 146(1):341–347

    CAS  PubMed  Google Scholar 

  277. Hinkle PM, Gehret AU, Jones BW (2012) Desensitization, trafficking, and resensitization of the pituitary thyrotropin-releasing hormone receptor. Front Neurosci 6:180

    PubMed  PubMed Central  Google Scholar 

  278. Hurbin A et al (2002) The vasopressin receptors colocalize with vasopressin in the magnocellular neurons of the rat supraoptic nucleus and are modulated by water balance. Endocrinology 143(2):456–466

    CAS  PubMed  Google Scholar 

  279. Jones EG (1986) Neurotransmitters in the cerebral cortex. J Neurosurg 65:135–153

    CAS  PubMed  Google Scholar 

  280. Harmar AJ et al (1998) International union of pharmacology. XVIII. Nomenclature of receptors for vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide. Pharmacol Rev 50:265–270

    CAS  PubMed  Google Scholar 

  281. Morgan A, Burgoyne RD (1997) Common mechanisms for regulated exocytosis in the chromaffin cell and the synapse. Semin Cell Dev Biol 8(2):141–149

    CAS  PubMed  Google Scholar 

  282. Hokfelt T, Bartfai T, Bloom F (2003) Neuropeptides:opportunities for drug discovery. Lancet Neurol 2:463–472

    PubMed  Google Scholar 

  283. Somogyi P et al (1984) Chromogranin immunoreactivity in the central nervous system. Immunochemical characterisation, distribution and relationship to catecholamine and enkephalin pathways. Brain Res Rev 8:193–230

    CAS  Google Scholar 

  284. De Potter WP et al (1997) Noradrenergic neurons release both noradrenaline and neuropeptide Y from a single pool: the large dense cored vesicles. Synapse 25:44–55

    PubMed  Google Scholar 

  285. Schwarzenbrunner U et al (1990) Sympathetic axons and nerve terminals: the protein composition of small and large dense-core and of a third type of vesicles. Neuroscience 37:819–827

    CAS  PubMed  Google Scholar 

  286. Winkler H (1997) Membrane composition of adrenergic large and small dense core vesicles and of synaptic vesicles: consequences for their biogenesis. Neurochem Res 22:921–932

    CAS  PubMed  Google Scholar 

  287. Kadota K, Kadota T (1973) Isolation of coated vesicles, plain synaptic vesicles, and flocculent material from a crude synaptosome fraction of guinea pig whole brain. J Cell Biol 58(1):135–151

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by Grants UNAM-DGAPA-PAPIIT-IN216918, GI200121 & CONACYT-CB-238744 and CB-283279 to LZ, and NIMH-IRP-MH002386 to LEE. We acknowledge the anonymous reviewers of the manuscript for scrupulous attention to detail, and for several helpful suggestions. We thank our colleagues Scott Young and Chip Gerfen (NIMH) for perspectives and advice on nomenclature and concept development.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the writing, editing and creation of figures and tables of the manuscript.

Corresponding authors

Correspondence to Lee E. Eiden or Limei Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eiden, L.E., Hernández, V.S., Jiang, S.Z. et al. Neuropeptides and small-molecule amine transmitters: cooperative signaling in the nervous system. Cell. Mol. Life Sci. 79, 492 (2022). https://doi.org/10.1007/s00018-022-04451-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00018-022-04451-7

Keywords

Navigation