Skip to main content
Log in

Adtrp regulates thermogenic activity of adipose tissue via mediating the secretion of S100b

Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Cite this article

Abstract

Brown and beige adipose tissues dissipate chemical energy in the form of heat to maintain your body temperature in cold conditions. The impaired function of these tissues results in various metabolic diseases in humans and mice. By bioinformatical analyses, we identified a functional thermogenic regulator of adipose tissue, Androgen-dependent tissue factor pathway inhibitor [TFPI]-regulating protein (Adtrp), which was significantly overexpressed in and functionally activated the mature brown/beige adipocytes. Hereby, we knocked out Adtrp in mice which led to multiple abnormalities in thermogenesis, metabolism, and maturation of brown/beige adipocytes causing excess lipid accumulation in brown adipose tissue (BAT) and cold intolerance. The capability of thermogenesis in brown/beige adipose tissues could be recovered in Adtrp KO mice upon direct β3-adrenergic receptor (β3-AR) stimulation by CL316,243 treatment. Our mechanistic studies revealed that Adtrp by binding to S100 calcium-binding protein b (S100b) indirectly mediated the secretion of S100b, which in turn promoted the β3-AR mediated thermogenesis via sympathetic innervation. These results may provide a novel insight into Adtrp in metabolism via regulating the differentiation and thermogenesis of adipose tissues in mice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Availability of data and material

The datasets or materials generated in the current study are available on reasonable request.

Abbreviations

Adtrp :

Androgen-dependent tissue factor pathway inhibitor (TFPI)-regulating protein

BAT:

Brown adipose tissue

β3-AR:

β-Adrenergic receptor

S100b :

S100 calcium-binding protein b

WAT:

White adipose tissue

Ucp1 :

Uncoupling protein-1

SNS:

Sympathetic nervous system

CAD:

Coronary artery disease

ECs:

Endothelial cells

FAHFAs:

Fatty acid esters of hydroxy fatty acids

iWAT:

Inguinal WAT

eWAT:

Epididymis WAT

GEO:

Gene Expression Omnibus

KO:

Knockout

SVF:

Stromal vascular fraction

CRISPR/Cas9:

Clustered regularly interspaced short palindromic repeats/CRISPR associated 9

SFP:

Specific pathogen-free

DEGs:

Differentially expressed genes

hTERT:

Human telomerase reverse transcriptase

DMEM:

Dulbecco’s modified Eagle’s medium

FBS:

Fetal bovine serum

TG:

Triglyceride

FFA:

Free fatty acid

RT-PCR:

Reverse transcription PCR

RT-qPCR:

Quantitative reverse transcription PCR

M-MLV:

Moloney Murine Leukemia Virus

Fabp4 :

Fatty acid-binding protein 4

Dio2 :

Deiodinase, iodothyronine, type II

Cidea :

Cell death-inducing DFFA-like effector A

Cox8b :

Cytochrome c oxidase subunit 8b

Pgc1α :

Peroxisome proliferative activated receptor, gamma, coactivator 1 alpha

Pparγ :

Peroxisome proliferator-activated receptor gamma

Prdm16 :

PR domain containing 16

GTT:

Glucose Tolerance Test

ITT:

Insulin Tolerance Test

VCO2 :

Carbon dioxide generation

VO2 :

Oxygen consumption

EE:

Energy expenditure

OCR:

Oxygen Consumption Rate

ECAR:

Extracellular Acidification Rate

FCCP:

Carbonyl cyanide-4-(trifluoromethoxy) phenylhydrazone

AA:

Antimycin A

Rot:

Rotenone

2-DG:

2-Deoxy-d-glucose

BCA:

Bicinchoninic acid

HE:

Hematoxylin and Eosin

IHC:

Immunohistochemistry

IF:

Immunofluorescence

HRP:

Horseradish Peroxidase

DAB:

3,3′-Diaminobenzidine tetra-hydrochloride

FITC:

Fluorescein isothiocyanate

Creb3 :

cAMP-responsive element-binding protein 3

IP:

Immunoprecipitation

SDS-PAGE:

Sodium Dodecyl Sulfate–Polyacrylamide Gel Electrophoresis

PVDF:

Polyvinylidene fluoride

ECL:

Enhanced chemiluminescence

Hsp90 :

Heat shock protein 90

hMSCs:

Human mesenchymal stromal cells

ADIPOQ :

Adiponectin C1Q and collagen domain containing

Gys2 :

Glycogen synthase 2

Elovl3 :

Elongase of very long chain fatty acids-3

AUC:

Area Under Curve

CMTM7 :

MARVEL transmembrane domain containing 7

TMED8 :

Transmembrane p24 trafficking protein family member 8

VTN :

Vitronectin

Clstn3β :

Calsyntenin 3β

BM-MSC:

Bone marrow MSC

HFD:

High-fat diet

ERRγ :

Estrogen-related receptor gamma

SNP:

Single-nucleotide polymorphism

References

  1. Seale P, Lazar MA (2009) Brown fat in humans: turning up the heat on obesity. Diabetes 58(7):1482–1484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Lo KA, Sun L (2013) Turning WAT into BAT: a review on regulators controlling the browning of white adipocytes. Biosci Rep 33:5

    Article  Google Scholar 

  3. Seale P, Bjork B, Yang W, Kajimura S, Chin S, Kuang S, Scimè A, Devarakonda S, Conroe HM, Erdjument-Bromage H et al (2008) PRDM16 controls a brown fat/skeletal muscle switch. Nature 454(7207):961–967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Cannon B, Nedergaard J (2004) Brown adipose tissue: function and physiological significance. Physiol Rev 84(1):277–359

    Article  CAS  PubMed  Google Scholar 

  5. Golozoubova V, Hohtola E, Matthias A, Jacobsson A, Cannon B, Nedergaard J (2001) Only UCP1 can mediate adaptive nonshivering thermogenesis in the cold. FASEB J 15(11):2048–2050

    Article  CAS  PubMed  Google Scholar 

  6. Nedergaard J, Golozoubova V, Matthias A, Asadi A, Jacobsson A, Cannon B (2001) UCP1: the only protein able to mediate adaptive non-shivering thermogenesis and metabolic inefficiency. Biochem Biophys Acta 1504(1):82–106

    CAS  PubMed  Google Scholar 

  7. Wu J, Bostrom P, Sparks LM, Ye L, Choi JH, Giang AH, Khandekar M, Virtanen KA, Nuutila P, Schaart G et al (2012) Beige adipocytes are a distinct type of thermogenic fat cell in mouse and human. Cell 150(2):366–376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Cypess AM, Lehman S, Williams G, Tal I, Rodman D, Goldfine AB, Kuo FC, Palmer EL, Tseng YH, Doria A et al (2009) Identification and importance of brown adipose tissue in adult humans. N Engl J Med 360(15):1509–1517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Virtanen KA, Lidell ME, Orava J, Heglind M, Westergren R, Niemi T, Taittonen M, Laine J, Savisto NJ, Enerbäck S et al (2009) Functional brown adipose tissue in healthy adults. N Engl J Med 360(15):1518–1525

    Article  CAS  PubMed  Google Scholar 

  10. Vitali A, Murano I, Zingaretti MC, Frontini A, Ricquier D, Cinti S (2012) The adipose organ of obesity-prone C57BL/6J mice is composed of mixed white and brown adipocytes. J Lipid Res 53(4):619–629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Harms M, Seale P (2013) Brown and beige fat: development, function and therapeutic potential. Nat Med 19(10):1252–1263

    Article  CAS  PubMed  Google Scholar 

  12. Himms-Hagen J, Melnyk A, Zingaretti MC, Ceresi E, Barbatelli G, Cinti S (2000) Multilocular fat cells in WAT of CL-316243-treated rats derive directly from white adipocytes. Am J Physiol Cell Physiol 279(3):C670-681

    Article  CAS  PubMed  Google Scholar 

  13. Collins S (2011) β-adrenoceptor signaling networks in adipocytes for recruiting stored fat and energy expenditure. Front Endocrinol (Lausanne) 2:102

    Article  Google Scholar 

  14. Jimenez M, Léger B, Canola K, Lehr L, Arboit P, Seydoux J, Russell AP, Giacobino JP, Muzzin P, Preitner F (2002) Beta(1)/beta(2)/beta(3)-adrenoceptor knockout mice are obese and cold-sensitive but have normal lipolytic responses to fasting. FEBS Lett 530(1–3):37–40

    Article  CAS  PubMed  Google Scholar 

  15. Bachman ES, Dhillon H, Zhang CY, Cinti S, Bianco AC, Kobilka BK, Lowell BB (2002) betaAR signaling required for diet-induced thermogenesis and obesity resistance. Science 297(5582):843–845

    Article  CAS  PubMed  Google Scholar 

  16. Robidoux J, Martin TL, Collins S (2004) Beta-adrenergic receptors and regulation of energy expenditure: a family affair. Annu Rev Pharmacol Toxicol 44:297–323

    Article  CAS  PubMed  Google Scholar 

  17. Wang F, Xu CQ, He Q, Cai JP, Li XC, Wang D, Xiong X, Liao YH, Zeng QT, Yang YZ et al (2011) Genome-wide association identifies a susceptibility locus for coronary artery disease in the Chinese Han population. Nat Genet 43(4):345–349

    Article  CAS  PubMed  Google Scholar 

  18. Park JW, Cai J, McIntosh I, Jabs EW, Fallin MD, Ingersoll R, Hetmanski JB, Vekemans M, Attie-Bitach T, Lovett M et al (2006) High throughput SNP and expression analyses of candidate genes for non-syndromic oral clefts. J Med Genet 43(7):598–608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bochukova EG, Soneji S, Wall SA, Wilkie AO (2010) Scalp fibroblasts have a shared expression profile in monogenic craniosynostosis. J Med Genet 47(12):803–808

    Article  CAS  PubMed  Google Scholar 

  20. Lupu C, Zhu H, Popescu NI, Wren JD, Lupu F (2011) Novel protein ADTRP regulates TFPI expression and function in human endothelial cells in normal conditions and in response to androgen. Blood 118(16):4463–4471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Patel MM, Behar AR, Silasi R, Regmi G, Sansam CL, Keshari RS, Lupu F, Lupu C (2018) Role of ADTRP (androgen-dependent tissue factor pathway inhibitor regulating protein) in vascular development and function. J Am Heart Assoc 7(22):e010690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Parsons WH, Kolar MJ, Kamat SS, Cognetta AB 3rd, Hulce JJ, Saez E, Kahn BB, Saghatelian A, Cravatt BF (2016) AIG1 and ADTRP are atypical integral membrane hydrolases that degrade bioactive FAHFAs. Nat Chem Biol 12(5):367–372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Erikci Ertunc M, Kok BP, Parsons WH, Wang JG, Tan D, Donaldson CJ, Pinto AFM, Vaughan JM, Ngo N, Lum KM et al (2020) AIG1 and ADTRP are endogenous hydrolases of fatty acid esters of hydroxy fatty acids (FAHFAs) in mice. J Biol Chem 295(18):5891–5905

    Article  PubMed  PubMed Central  Google Scholar 

  24. Yore MM, Syed I, Moraes-Vieira PM, Zhang T, Herman MA, Homan EA, Patel RT, Lee J, Chen S, Peroni OD et al (2014) Discovery of a class of endogenous mammalian lipids with anti-diabetic and anti-inflammatory effects. Cell 159(2):318–332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Klein J, Fasshauer M, Ito M, Lowell BB, Benito M, Kahn CR (1999) beta(3)-adrenergic stimulation differentially inhibits insulin signaling and decreases insulin-induced glucose uptake in brown adipocytes. J Biol Chem 274(49):34795–34802

    Article  CAS  PubMed  Google Scholar 

  26. Cohen P, Levy JD, Zhang Y, Frontini A, Kolodin DP, Svensson KJ, Lo JC, Zeng X, Ye L, Khandekar MJ et al (2014) Ablation of PRDM16 and beige adipose causes metabolic dysfunction and a subcutaneous to visceral fat switch. Cell 156(1–2):304–316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Fasshauer M, Klein J, Kriauciunas KM, Ueki K, Benito M, Kahn CR (2001) Essential role of insulin receptor substrate 1 in differentiation of brown adipocytes. Mol Cell Biol 21(1):319–329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Sun J, Chen J, Li T, Huang P, Li J, Shen M, Gao M, Sun Y, Liang J, Li X et al (2020) ROS production and mitochondrial dysfunction driven by PU.1-regulated NOX4-p22(phox) activation in Aβ-induced retinal pigment epithelial cell injury. Theranostics 10(25):11637–11655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ikeda K, Kang Q, Yoneshiro T, Camporez JP, Maki H, Homma M, Shinoda K, Chen Y, Lu X, Maretich P et al (2017) UCP1-independent signaling involving SERCA2b-mediated calcium cycling regulates beige fat thermogenesis and systemic glucose homeostasis. Nat Med 23(12):1454–1465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Li P, Song R, Yin F, Liu M, Liu H, Ma S, Jia X, Lu X, Zhong Y, Yu L et al (2022) circMRPS35 promotes malignant progression and cisplatin resistance in hepatocellular carcinoma. Mol Ther 30(1):431–447

    Article  CAS  PubMed  Google Scholar 

  31. Enerbäck S, Jacobsson A, Simpson EM, Guerra C, Yamashita H, Harper ME, Kozak LP (1997) Mice lacking mitochondrial uncoupling protein are cold-sensitive but not obese. Nature 387(6628):90–94

    Article  PubMed  Google Scholar 

  32. Bukowiecki L, Collet AJ, Follea N, Guay G, Jahjah L (1982) Brown adipose tissue hyperplasia: a fundamental mechanism of adaptation to cold and hyperphagia. Am J Physiol 242(6):E353-359

    CAS  PubMed  Google Scholar 

  33. Guerra C, Koza RA, Yamashita H, Walsh K, Kozak LP (1998) Emergence of brown adipocytes in white fat in mice is under genetic control. Effects on body weight and adiposity. J Clin Invest 102(2):412–420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Barbatelli G, Murano I, Madsen L, Hao Q, Jimenez M, Kristiansen K, Giacobino JP, De Matteis R, Cinti S (2010) The emergence of cold-induced brown adipocytes in mouse white fat depots is determined predominantly by white to brown adipocyte transdifferentiation. Am J Physiol Endocrinol Metab 298(6):E1244-1253

    Article  CAS  PubMed  Google Scholar 

  35. Li K, Feng T, Liu L, Liu H, Huang K, Zhou J (2021) Hepatic proteomic analysis of selenoprotein T Knockout Mice By TMT: implications for the role of selenoprotein T in glucose and lipid metabolism. Int J Mol Sci 22:16

    Google Scholar 

  36. de Jesus LA, Carvalho SD, Ribeiro MO, Schneider M, Kim S-W, Harney JW, Larsen PR, Bianco AC (2001) The type 2 iodothyronine deiodinase is essential for adaptive thermogenesis in brown adipose tissue. J Clin Investig 108(9):1379–1385

    Article  PubMed  PubMed Central  Google Scholar 

  37. Westerberg R, Mansson JE, Golozoubova V, Shabalina IG, Backlund EC, Tvrdik P, Retterstol K, Capecchi MR, Jacobsson A (2006) ELOVL3 is an important component for early onset of lipid recruitment in brown adipose tissue. J Biol Chem 281(8):4958–4968

    Article  CAS  PubMed  Google Scholar 

  38. van de Peppel J, Strini T, Tilburg J, Westerhoff H, van Wijnen AJ, van Leeuwen JP (2017) Identification of three early phases of cell-fate determination during osteogenic and adipogenic differentiation by transcription factor dynamics. Stem Cell Reports 8(4):947–960

    Article  PubMed  PubMed Central  Google Scholar 

  39. Velazquez-Villegas LA, Perino A, Lemos V, Zietak M, Nomura M, Pols TWH, Schoonjans K (2018) TGR5 signalling promotes mitochondrial fission and beige remodelling of white adipose tissue. Nat Commun 9(1):245

    Article  PubMed  PubMed Central  Google Scholar 

  40. Luck K, Kim DK, Lambourne L, Spirohn K, Begg BE, Bian W, Brignall R, Cafarelli T, Campos-Laborie FJ, Charloteaux B et al (2020) A reference map of the human binary protein interactome. Nature 580(7803):402–408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Yu H, Tardivo L, Tam S, Weiner E, Gebreab F, Fan C, Svrzikapa N, Hirozane-Kishikawa T, Rietman E, Yang X et al (2011) Next-generation sequencing to generate interactome datasets. Nat Methods 8(6):478–480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Wang J, Huo K, Ma L, Tang L, Li D, Huang X, Yuan Y, Li C, Wang W, Guan W et al (2011) Toward an understanding of the protein interaction network of the human liver. Mol Syst Biol 7:536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kim TH, Jo SH, Choi H, Park JM, Kim MY, Nojima H, Kim JW, Ahn YH (2014) Identification of Creb3l4 as an essential negative regulator of adipogenesis. Cell Death Dis 5:e1527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Goncalves CA, Leite MC, Guerra MC (2010) Adipocytes as an important source of serum S100B and possible roles of this protein in adipose tissue. Cardiovasc Psychiatry Neurol 2010:790431

    Article  PubMed  PubMed Central  Google Scholar 

  45. Zeng X, Ye M, Resch JM, Jedrychowski MP, Hu B, Lowell BB, Ginty DD, Spiegelman BM (2019) Innervation of thermogenic adipose tissue via a calsyntenin 3beta-S100b axis. Nature 569(7755):229–235

    Article  PubMed  PubMed Central  Google Scholar 

  46. Xue H, Wang Z, Hua Y, Ke S, Wang Y, Zhang J, Pan YH, Huang W, Irwin DM, Zhang S (2018) Molecular signatures and functional analysis of beige adipocytes induced from in vivo intra-abdominal adipocytes. Sci Adv 4(7):eaar5319

    Article  PubMed  PubMed Central  Google Scholar 

  47. Blondin DP, Nielsen S, Kuipers EN, Severinsen MC, Jensen VH, Miard S, Jespersen NZ, Kooijman S, Boon MR, Fortin M et al (2020) Human brown adipocyte thermogenesis is driven by beta2-AR stimulation. Cell Metab 32(2):287–300

    Article  CAS  PubMed  Google Scholar 

  48. Morrison SF (2016) Central neural control of thermoregulation and brown adipose tissue. Autonomic Neurosci Basic Clin 196:14–24

    Article  CAS  Google Scholar 

  49. Zeng W, Pirzgalska RM, Pereira MM, Kubasova N, Barateiro A, Seixas E, Lu YH, Kozlova A, Voss H, Martins GG et al (2015) Sympathetic neuro-adipose connections mediate leptin-driven lipolysis. Cell 163(1):84–94

    Article  CAS  PubMed  Google Scholar 

  50. Kazak L, Chouchani ET, Jedrychowski MP, Erickson BK, Shinoda K, Cohen P, Vetrivelan R, Lu GZ, Laznik-Bogoslavski D, Hasenfuss SC et al (2015) A creatine-driven substrate cycle enhances energy expenditure and thermogenesis in beige fat. Cell 163(3):643–655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Chi J, Wu Z, Choi CHJ, Nguyen L, Tegegne S, Ackerman SE, Crane A, Marchildon F, Tessier-Lavigne M, Cohen P (2018) Three-dimensional adipose tissue imaging reveals regional variation in beige fat biogenesis and PRDM16-dependent sympathetic neurite density. Cell Metab 27(1):226-236.e223

    Article  CAS  PubMed  Google Scholar 

  52. Bartelt A, Bruns OT, Reimer R, Hohenberg H, Ittrich H, Peldschus K, Kaul MG, Tromsdorf UI, Weller H, Waurisch C et al (2011) Brown adipose tissue activity controls triglyceride clearance. Nat Med 17(2):200–205

    Article  CAS  PubMed  Google Scholar 

  53. Luo C, Pook E, Tang B, Zhang W, Li S, Leineweber K, Cheung SH, Chen Q, Bechem M, Hu JS et al (2017) Androgen inhibits key atherosclerotic processes by directly activating ADTRP transcription. Biochim Biophys Acta Mol Basis Dis 1863(9):2319–2332

    Article  CAS  PubMed  Google Scholar 

  54. Chinetti-Gbaguidi G, Copin C, Derudas B, Vanhoutte J, Zawadzki C, Jude B, Haulon S, Pattou F, Marx N, Staels B (2015) The coronary artery disease-associated gene C6ORF105 is expressed in human macrophages under the transcriptional control of PPARγ. FEBS Lett 589(4):461–466

    Article  CAS  PubMed  Google Scholar 

  55. Ahmadian M, Liu S, Reilly SM, Hah N, Fan W, Yoshihara E, Jha P, De Magalhaes Filho CD, Jacinto S, Gomez AV et al (2018) ERRgamma preserves brown fat innate thermogenic activity. Cell Rep 22(11):2849–2859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Fitzgibbons TP, Kogan S, Aouadi M, Hendricks GM, Straubhaar J, Czech MP (2011) Similarity of mouse perivascular and brown adipose tissues and their resistance to diet-induced inflammation. Am J Physiol Heart Circ Physiol 301(4):H1425-1437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Kawahito H, Yamada H, Irie D, Kato T, Akakabe Y, Kishida S, Takata H, Wakana N, Ogata T, Ikeda K et al (2013) Periaortic adipose tissue-specific activation of the renin-angiotensin system contributes to atherosclerosis development in uninephrectomized apoE-/- mice. Am J Physiol Heart Circ Physiol 305(5):H667-675

    Article  CAS  PubMed  Google Scholar 

  58. Chang L, Villacorta L, Li R, Hamblin M, Xu W, Dou C, Zhang J, Wu J, Zeng R, Chen YE (2012) Loss of perivascular adipose tissue on peroxisome proliferator-activated receptor-gamma deletion in smooth muscle cells impairs intravascular thermoregulation and enhances atherosclerosis. Circulation 126(9):1067–1078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Xiong W, Zhao X, Villacorta L, Rom O, Garcia-Barrio MT, Guo Y, Fan Y, Zhu T, Zhang J, Zeng R et al (2018) Brown adipocyte-specific PPARgamma (peroxisome proliferator-activated receptor gamma) deletion impairs perivascular adipose tissue development and enhances atherosclerosis in mice. Arterioscler Thromb Vasc Biol 38(8):1738–1747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank professor Fazheng Ren from China Agricultural University for providing guidance for the experiments. We thank professor Nafis A Rahman from University of Turku for the language editing.

Funding

This study was supported by grants from the National Natural Science Foundation of China (82171854 and 31970802), Beijing Municipal Natural Science Foundation (7202099) and the Medical University of Bialystok, Poland (SUB/1/DN/20/006/1104, to Xiangdong Li).

Author information

Authors and Affiliations

Authors

Contributions

XL designed the study concept and supervised the project and analyzed the data. PL, RS and XL interpreted the data. PL, RS and YD conducted the experiments. PL, RS and HL analyzed RNA-seq and microarray data. All authors approved the final content.

Corresponding author

Correspondence to Xiangdong Li.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Ethics approval

All animal studies were approved by the ethical committee of the China Agricultural University (No.: AW32201202-3-2).

Consent to participate

Not applicable. No human subjects were recruited for this study.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 11 kb)

Supplementary file2 (CSV 208 kb)

Supplementary file3 (CSV 12 kb)

Supplementary file4 (CSV 16 kb)

Supplementary file5 (CSV 30 kb)

Supplementary file6 (CSV 1 kb)

18_2022_4441_MOESM7_ESM.pdf

Figure S1 (A-D) The expression heatmaps of the 5 overlapping genes in cold exposure at 4°C or CL316,243 treatment in mice BAT and iWAT (GEO: GSE86338, GSE104285, GSE13432, and GSE129083). Figure S2 (A) A schematic illustration of the strategy of generating the Adtrp KO mouse with the CRISPR/Cas9 system. (B) Genotyping of the Adtrp KO mice with two pairs of primers. (C-D) RT-qPCR analysis of Adtrp in BAT and Liver of Adtrp KO and WT mice (n = 5). Error bars represent the means ± SEM of three independent experiments, ***p < 0.001. Figure S3 (A) Body weights of Adtrp KO and WT mice at the age of 14 weeks (n = 10). (B) Histopathological images of liver from Adtrp KO and WT mice at the age of 8 weeks (n = 4, Scale bars, 50 μm). (C and D) Food and water intakes of Adtrp KO and WT mice in 24 h at the age of 8 weeks (n = 6). (E and F) GTT and ITT of Adtrp KO and WT mice (n = 5). (G and H) Statistics of the OCR data of Adtrp KO and WT differentiated BAT or iWAT SVF adipocytes. (I and J) Statistics of the ECAR data of Adtrp KO and WT differentiated BAT or iWAT SVF adipocytes. Error bars represent the means ± SEM of three independent experiments. *p < 0.05, **p < 0.01, ***p < 0.001, ns: nonstatistical significance. Figure S4 (A) EE of Adtrp KO and WT mice in metabolic cages at age of 8 weeks with 16°C cold exposure (n = 6). (B and C) Food and water intake of Adtrp KO and WT mice in 24 h at the age of 8 weeks with 16°C cold exposure (n = 6). (D) Statistics of AUC data of EE about Adtrp KO and WT mice at 25°C and 16°C. (E) The core body temperatures of 7 days’ CL316,243 treated Adtrp KO and WT mice at different time points after exposure to cold at 4°C (n = 5). Error bars represent the means ± SEM of three independent experiments. *p < 0.05, **p < 0.01, ***p < 0.001, ns: nonstatistical significance. Figure S5 (A) List of the predicted interaction proteins with ADTRP. (B) IP by anti-GFP antibody bond A/G magnetic beads, and western blot analyses of Creb3 and Adtrp in 293T cells. (C and D) RT-qPCR analysis of S100b in BAT and iWAT of Adtrp KO and WT mice (n = 5). Error bars represent the means ± SEM of three independent experiments, ns: nonstatistical significance (PDF 5074 kb)

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, P., Song, R., Du, Y. et al. Adtrp regulates thermogenic activity of adipose tissue via mediating the secretion of S100b. Cell. Mol. Life Sci. 79, 407 (2022). https://doi.org/10.1007/s00018-022-04441-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00018-022-04441-9

Keywords

Navigation