Abstract
Brown and beige adipose tissues dissipate chemical energy in the form of heat to maintain your body temperature in cold conditions. The impaired function of these tissues results in various metabolic diseases in humans and mice. By bioinformatical analyses, we identified a functional thermogenic regulator of adipose tissue, Androgen-dependent tissue factor pathway inhibitor [TFPI]-regulating protein (Adtrp), which was significantly overexpressed in and functionally activated the mature brown/beige adipocytes. Hereby, we knocked out Adtrp in mice which led to multiple abnormalities in thermogenesis, metabolism, and maturation of brown/beige adipocytes causing excess lipid accumulation in brown adipose tissue (BAT) and cold intolerance. The capability of thermogenesis in brown/beige adipose tissues could be recovered in Adtrp KO mice upon direct β3-adrenergic receptor (β3-AR) stimulation by CL316,243 treatment. Our mechanistic studies revealed that Adtrp by binding to S100 calcium-binding protein b (S100b) indirectly mediated the secretion of S100b, which in turn promoted the β3-AR mediated thermogenesis via sympathetic innervation. These results may provide a novel insight into Adtrp in metabolism via regulating the differentiation and thermogenesis of adipose tissues in mice.
This is a preview of subscription content,
to check access.







Similar content being viewed by others
Availability of data and material
The datasets or materials generated in the current study are available on reasonable request.
Abbreviations
- Adtrp :
-
Androgen-dependent tissue factor pathway inhibitor (TFPI)-regulating protein
- BAT:
-
Brown adipose tissue
- β3-AR:
-
β-Adrenergic receptor
- S100b :
-
S100 calcium-binding protein b
- WAT:
-
White adipose tissue
- Ucp1 :
-
Uncoupling protein-1
- SNS:
-
Sympathetic nervous system
- CAD:
-
Coronary artery disease
- ECs:
-
Endothelial cells
- FAHFAs:
-
Fatty acid esters of hydroxy fatty acids
- iWAT:
-
Inguinal WAT
- eWAT:
-
Epididymis WAT
- GEO:
-
Gene Expression Omnibus
- KO:
-
Knockout
- SVF:
-
Stromal vascular fraction
- CRISPR/Cas9:
-
Clustered regularly interspaced short palindromic repeats/CRISPR associated 9
- SFP:
-
Specific pathogen-free
- DEGs:
-
Differentially expressed genes
- hTERT:
-
Human telomerase reverse transcriptase
- DMEM:
-
Dulbecco’s modified Eagle’s medium
- FBS:
-
Fetal bovine serum
- TG:
-
Triglyceride
- FFA:
-
Free fatty acid
- RT-PCR:
-
Reverse transcription PCR
- RT-qPCR:
-
Quantitative reverse transcription PCR
- M-MLV:
-
Moloney Murine Leukemia Virus
- Fabp4 :
-
Fatty acid-binding protein 4
- Dio2 :
-
Deiodinase, iodothyronine, type II
- Cidea :
-
Cell death-inducing DFFA-like effector A
- Cox8b :
-
Cytochrome c oxidase subunit 8b
- Pgc1α :
-
Peroxisome proliferative activated receptor, gamma, coactivator 1 alpha
- Pparγ :
-
Peroxisome proliferator-activated receptor gamma
- Prdm16 :
-
PR domain containing 16
- GTT:
-
Glucose Tolerance Test
- ITT:
-
Insulin Tolerance Test
- VCO2 :
-
Carbon dioxide generation
- VO2 :
-
Oxygen consumption
- EE:
-
Energy expenditure
- OCR:
-
Oxygen Consumption Rate
- ECAR:
-
Extracellular Acidification Rate
- FCCP:
-
Carbonyl cyanide-4-(trifluoromethoxy) phenylhydrazone
- AA:
-
Antimycin A
- Rot:
-
Rotenone
- 2-DG:
-
2-Deoxy-d-glucose
- BCA:
-
Bicinchoninic acid
- HE:
-
Hematoxylin and Eosin
- IHC:
-
Immunohistochemistry
- IF:
-
Immunofluorescence
- HRP:
-
Horseradish Peroxidase
- DAB:
-
3,3′-Diaminobenzidine tetra-hydrochloride
- FITC:
-
Fluorescein isothiocyanate
- Creb3 :
-
cAMP-responsive element-binding protein 3
- IP:
-
Immunoprecipitation
- SDS-PAGE:
-
Sodium Dodecyl Sulfate–Polyacrylamide Gel Electrophoresis
- PVDF:
-
Polyvinylidene fluoride
- ECL:
-
Enhanced chemiluminescence
- Hsp90 :
-
Heat shock protein 90
- hMSCs:
-
Human mesenchymal stromal cells
- ADIPOQ :
-
Adiponectin C1Q and collagen domain containing
- Gys2 :
-
Glycogen synthase 2
- Elovl3 :
-
Elongase of very long chain fatty acids-3
- AUC:
-
Area Under Curve
- CMTM7 :
-
MARVEL transmembrane domain containing 7
- TMED8 :
-
Transmembrane p24 trafficking protein family member 8
- VTN :
-
Vitronectin
- Clstn3β :
-
Calsyntenin 3β
- BM-MSC:
-
Bone marrow MSC
- HFD:
-
High-fat diet
- ERRγ :
-
Estrogen-related receptor gamma
- SNP:
-
Single-nucleotide polymorphism
References
Seale P, Lazar MA (2009) Brown fat in humans: turning up the heat on obesity. Diabetes 58(7):1482–1484
Lo KA, Sun L (2013) Turning WAT into BAT: a review on regulators controlling the browning of white adipocytes. Biosci Rep 33:5
Seale P, Bjork B, Yang W, Kajimura S, Chin S, Kuang S, Scimè A, Devarakonda S, Conroe HM, Erdjument-Bromage H et al (2008) PRDM16 controls a brown fat/skeletal muscle switch. Nature 454(7207):961–967
Cannon B, Nedergaard J (2004) Brown adipose tissue: function and physiological significance. Physiol Rev 84(1):277–359
Golozoubova V, Hohtola E, Matthias A, Jacobsson A, Cannon B, Nedergaard J (2001) Only UCP1 can mediate adaptive nonshivering thermogenesis in the cold. FASEB J 15(11):2048–2050
Nedergaard J, Golozoubova V, Matthias A, Asadi A, Jacobsson A, Cannon B (2001) UCP1: the only protein able to mediate adaptive non-shivering thermogenesis and metabolic inefficiency. Biochem Biophys Acta 1504(1):82–106
Wu J, Bostrom P, Sparks LM, Ye L, Choi JH, Giang AH, Khandekar M, Virtanen KA, Nuutila P, Schaart G et al (2012) Beige adipocytes are a distinct type of thermogenic fat cell in mouse and human. Cell 150(2):366–376
Cypess AM, Lehman S, Williams G, Tal I, Rodman D, Goldfine AB, Kuo FC, Palmer EL, Tseng YH, Doria A et al (2009) Identification and importance of brown adipose tissue in adult humans. N Engl J Med 360(15):1509–1517
Virtanen KA, Lidell ME, Orava J, Heglind M, Westergren R, Niemi T, Taittonen M, Laine J, Savisto NJ, Enerbäck S et al (2009) Functional brown adipose tissue in healthy adults. N Engl J Med 360(15):1518–1525
Vitali A, Murano I, Zingaretti MC, Frontini A, Ricquier D, Cinti S (2012) The adipose organ of obesity-prone C57BL/6J mice is composed of mixed white and brown adipocytes. J Lipid Res 53(4):619–629
Harms M, Seale P (2013) Brown and beige fat: development, function and therapeutic potential. Nat Med 19(10):1252–1263
Himms-Hagen J, Melnyk A, Zingaretti MC, Ceresi E, Barbatelli G, Cinti S (2000) Multilocular fat cells in WAT of CL-316243-treated rats derive directly from white adipocytes. Am J Physiol Cell Physiol 279(3):C670-681
Collins S (2011) β-adrenoceptor signaling networks in adipocytes for recruiting stored fat and energy expenditure. Front Endocrinol (Lausanne) 2:102
Jimenez M, Léger B, Canola K, Lehr L, Arboit P, Seydoux J, Russell AP, Giacobino JP, Muzzin P, Preitner F (2002) Beta(1)/beta(2)/beta(3)-adrenoceptor knockout mice are obese and cold-sensitive but have normal lipolytic responses to fasting. FEBS Lett 530(1–3):37–40
Bachman ES, Dhillon H, Zhang CY, Cinti S, Bianco AC, Kobilka BK, Lowell BB (2002) betaAR signaling required for diet-induced thermogenesis and obesity resistance. Science 297(5582):843–845
Robidoux J, Martin TL, Collins S (2004) Beta-adrenergic receptors and regulation of energy expenditure: a family affair. Annu Rev Pharmacol Toxicol 44:297–323
Wang F, Xu CQ, He Q, Cai JP, Li XC, Wang D, Xiong X, Liao YH, Zeng QT, Yang YZ et al (2011) Genome-wide association identifies a susceptibility locus for coronary artery disease in the Chinese Han population. Nat Genet 43(4):345–349
Park JW, Cai J, McIntosh I, Jabs EW, Fallin MD, Ingersoll R, Hetmanski JB, Vekemans M, Attie-Bitach T, Lovett M et al (2006) High throughput SNP and expression analyses of candidate genes for non-syndromic oral clefts. J Med Genet 43(7):598–608
Bochukova EG, Soneji S, Wall SA, Wilkie AO (2010) Scalp fibroblasts have a shared expression profile in monogenic craniosynostosis. J Med Genet 47(12):803–808
Lupu C, Zhu H, Popescu NI, Wren JD, Lupu F (2011) Novel protein ADTRP regulates TFPI expression and function in human endothelial cells in normal conditions and in response to androgen. Blood 118(16):4463–4471
Patel MM, Behar AR, Silasi R, Regmi G, Sansam CL, Keshari RS, Lupu F, Lupu C (2018) Role of ADTRP (androgen-dependent tissue factor pathway inhibitor regulating protein) in vascular development and function. J Am Heart Assoc 7(22):e010690
Parsons WH, Kolar MJ, Kamat SS, Cognetta AB 3rd, Hulce JJ, Saez E, Kahn BB, Saghatelian A, Cravatt BF (2016) AIG1 and ADTRP are atypical integral membrane hydrolases that degrade bioactive FAHFAs. Nat Chem Biol 12(5):367–372
Erikci Ertunc M, Kok BP, Parsons WH, Wang JG, Tan D, Donaldson CJ, Pinto AFM, Vaughan JM, Ngo N, Lum KM et al (2020) AIG1 and ADTRP are endogenous hydrolases of fatty acid esters of hydroxy fatty acids (FAHFAs) in mice. J Biol Chem 295(18):5891–5905
Yore MM, Syed I, Moraes-Vieira PM, Zhang T, Herman MA, Homan EA, Patel RT, Lee J, Chen S, Peroni OD et al (2014) Discovery of a class of endogenous mammalian lipids with anti-diabetic and anti-inflammatory effects. Cell 159(2):318–332
Klein J, Fasshauer M, Ito M, Lowell BB, Benito M, Kahn CR (1999) beta(3)-adrenergic stimulation differentially inhibits insulin signaling and decreases insulin-induced glucose uptake in brown adipocytes. J Biol Chem 274(49):34795–34802
Cohen P, Levy JD, Zhang Y, Frontini A, Kolodin DP, Svensson KJ, Lo JC, Zeng X, Ye L, Khandekar MJ et al (2014) Ablation of PRDM16 and beige adipose causes metabolic dysfunction and a subcutaneous to visceral fat switch. Cell 156(1–2):304–316
Fasshauer M, Klein J, Kriauciunas KM, Ueki K, Benito M, Kahn CR (2001) Essential role of insulin receptor substrate 1 in differentiation of brown adipocytes. Mol Cell Biol 21(1):319–329
Sun J, Chen J, Li T, Huang P, Li J, Shen M, Gao M, Sun Y, Liang J, Li X et al (2020) ROS production and mitochondrial dysfunction driven by PU.1-regulated NOX4-p22(phox) activation in Aβ-induced retinal pigment epithelial cell injury. Theranostics 10(25):11637–11655
Ikeda K, Kang Q, Yoneshiro T, Camporez JP, Maki H, Homma M, Shinoda K, Chen Y, Lu X, Maretich P et al (2017) UCP1-independent signaling involving SERCA2b-mediated calcium cycling regulates beige fat thermogenesis and systemic glucose homeostasis. Nat Med 23(12):1454–1465
Li P, Song R, Yin F, Liu M, Liu H, Ma S, Jia X, Lu X, Zhong Y, Yu L et al (2022) circMRPS35 promotes malignant progression and cisplatin resistance in hepatocellular carcinoma. Mol Ther 30(1):431–447
Enerbäck S, Jacobsson A, Simpson EM, Guerra C, Yamashita H, Harper ME, Kozak LP (1997) Mice lacking mitochondrial uncoupling protein are cold-sensitive but not obese. Nature 387(6628):90–94
Bukowiecki L, Collet AJ, Follea N, Guay G, Jahjah L (1982) Brown adipose tissue hyperplasia: a fundamental mechanism of adaptation to cold and hyperphagia. Am J Physiol 242(6):E353-359
Guerra C, Koza RA, Yamashita H, Walsh K, Kozak LP (1998) Emergence of brown adipocytes in white fat in mice is under genetic control. Effects on body weight and adiposity. J Clin Invest 102(2):412–420
Barbatelli G, Murano I, Madsen L, Hao Q, Jimenez M, Kristiansen K, Giacobino JP, De Matteis R, Cinti S (2010) The emergence of cold-induced brown adipocytes in mouse white fat depots is determined predominantly by white to brown adipocyte transdifferentiation. Am J Physiol Endocrinol Metab 298(6):E1244-1253
Li K, Feng T, Liu L, Liu H, Huang K, Zhou J (2021) Hepatic proteomic analysis of selenoprotein T Knockout Mice By TMT: implications for the role of selenoprotein T in glucose and lipid metabolism. Int J Mol Sci 22:16
de Jesus LA, Carvalho SD, Ribeiro MO, Schneider M, Kim S-W, Harney JW, Larsen PR, Bianco AC (2001) The type 2 iodothyronine deiodinase is essential for adaptive thermogenesis in brown adipose tissue. J Clin Investig 108(9):1379–1385
Westerberg R, Mansson JE, Golozoubova V, Shabalina IG, Backlund EC, Tvrdik P, Retterstol K, Capecchi MR, Jacobsson A (2006) ELOVL3 is an important component for early onset of lipid recruitment in brown adipose tissue. J Biol Chem 281(8):4958–4968
van de Peppel J, Strini T, Tilburg J, Westerhoff H, van Wijnen AJ, van Leeuwen JP (2017) Identification of three early phases of cell-fate determination during osteogenic and adipogenic differentiation by transcription factor dynamics. Stem Cell Reports 8(4):947–960
Velazquez-Villegas LA, Perino A, Lemos V, Zietak M, Nomura M, Pols TWH, Schoonjans K (2018) TGR5 signalling promotes mitochondrial fission and beige remodelling of white adipose tissue. Nat Commun 9(1):245
Luck K, Kim DK, Lambourne L, Spirohn K, Begg BE, Bian W, Brignall R, Cafarelli T, Campos-Laborie FJ, Charloteaux B et al (2020) A reference map of the human binary protein interactome. Nature 580(7803):402–408
Yu H, Tardivo L, Tam S, Weiner E, Gebreab F, Fan C, Svrzikapa N, Hirozane-Kishikawa T, Rietman E, Yang X et al (2011) Next-generation sequencing to generate interactome datasets. Nat Methods 8(6):478–480
Wang J, Huo K, Ma L, Tang L, Li D, Huang X, Yuan Y, Li C, Wang W, Guan W et al (2011) Toward an understanding of the protein interaction network of the human liver. Mol Syst Biol 7:536
Kim TH, Jo SH, Choi H, Park JM, Kim MY, Nojima H, Kim JW, Ahn YH (2014) Identification of Creb3l4 as an essential negative regulator of adipogenesis. Cell Death Dis 5:e1527
Goncalves CA, Leite MC, Guerra MC (2010) Adipocytes as an important source of serum S100B and possible roles of this protein in adipose tissue. Cardiovasc Psychiatry Neurol 2010:790431
Zeng X, Ye M, Resch JM, Jedrychowski MP, Hu B, Lowell BB, Ginty DD, Spiegelman BM (2019) Innervation of thermogenic adipose tissue via a calsyntenin 3beta-S100b axis. Nature 569(7755):229–235
Xue H, Wang Z, Hua Y, Ke S, Wang Y, Zhang J, Pan YH, Huang W, Irwin DM, Zhang S (2018) Molecular signatures and functional analysis of beige adipocytes induced from in vivo intra-abdominal adipocytes. Sci Adv 4(7):eaar5319
Blondin DP, Nielsen S, Kuipers EN, Severinsen MC, Jensen VH, Miard S, Jespersen NZ, Kooijman S, Boon MR, Fortin M et al (2020) Human brown adipocyte thermogenesis is driven by beta2-AR stimulation. Cell Metab 32(2):287–300
Morrison SF (2016) Central neural control of thermoregulation and brown adipose tissue. Autonomic Neurosci Basic Clin 196:14–24
Zeng W, Pirzgalska RM, Pereira MM, Kubasova N, Barateiro A, Seixas E, Lu YH, Kozlova A, Voss H, Martins GG et al (2015) Sympathetic neuro-adipose connections mediate leptin-driven lipolysis. Cell 163(1):84–94
Kazak L, Chouchani ET, Jedrychowski MP, Erickson BK, Shinoda K, Cohen P, Vetrivelan R, Lu GZ, Laznik-Bogoslavski D, Hasenfuss SC et al (2015) A creatine-driven substrate cycle enhances energy expenditure and thermogenesis in beige fat. Cell 163(3):643–655
Chi J, Wu Z, Choi CHJ, Nguyen L, Tegegne S, Ackerman SE, Crane A, Marchildon F, Tessier-Lavigne M, Cohen P (2018) Three-dimensional adipose tissue imaging reveals regional variation in beige fat biogenesis and PRDM16-dependent sympathetic neurite density. Cell Metab 27(1):226-236.e223
Bartelt A, Bruns OT, Reimer R, Hohenberg H, Ittrich H, Peldschus K, Kaul MG, Tromsdorf UI, Weller H, Waurisch C et al (2011) Brown adipose tissue activity controls triglyceride clearance. Nat Med 17(2):200–205
Luo C, Pook E, Tang B, Zhang W, Li S, Leineweber K, Cheung SH, Chen Q, Bechem M, Hu JS et al (2017) Androgen inhibits key atherosclerotic processes by directly activating ADTRP transcription. Biochim Biophys Acta Mol Basis Dis 1863(9):2319–2332
Chinetti-Gbaguidi G, Copin C, Derudas B, Vanhoutte J, Zawadzki C, Jude B, Haulon S, Pattou F, Marx N, Staels B (2015) The coronary artery disease-associated gene C6ORF105 is expressed in human macrophages under the transcriptional control of PPARγ. FEBS Lett 589(4):461–466
Ahmadian M, Liu S, Reilly SM, Hah N, Fan W, Yoshihara E, Jha P, De Magalhaes Filho CD, Jacinto S, Gomez AV et al (2018) ERRgamma preserves brown fat innate thermogenic activity. Cell Rep 22(11):2849–2859
Fitzgibbons TP, Kogan S, Aouadi M, Hendricks GM, Straubhaar J, Czech MP (2011) Similarity of mouse perivascular and brown adipose tissues and their resistance to diet-induced inflammation. Am J Physiol Heart Circ Physiol 301(4):H1425-1437
Kawahito H, Yamada H, Irie D, Kato T, Akakabe Y, Kishida S, Takata H, Wakana N, Ogata T, Ikeda K et al (2013) Periaortic adipose tissue-specific activation of the renin-angiotensin system contributes to atherosclerosis development in uninephrectomized apoE-/- mice. Am J Physiol Heart Circ Physiol 305(5):H667-675
Chang L, Villacorta L, Li R, Hamblin M, Xu W, Dou C, Zhang J, Wu J, Zeng R, Chen YE (2012) Loss of perivascular adipose tissue on peroxisome proliferator-activated receptor-gamma deletion in smooth muscle cells impairs intravascular thermoregulation and enhances atherosclerosis. Circulation 126(9):1067–1078
Xiong W, Zhao X, Villacorta L, Rom O, Garcia-Barrio MT, Guo Y, Fan Y, Zhu T, Zhang J, Zeng R et al (2018) Brown adipocyte-specific PPARgamma (peroxisome proliferator-activated receptor gamma) deletion impairs perivascular adipose tissue development and enhances atherosclerosis in mice. Arterioscler Thromb Vasc Biol 38(8):1738–1747
Acknowledgements
We thank professor Fazheng Ren from China Agricultural University for providing guidance for the experiments. We thank professor Nafis A Rahman from University of Turku for the language editing.
Funding
This study was supported by grants from the National Natural Science Foundation of China (82171854 and 31970802), Beijing Municipal Natural Science Foundation (7202099) and the Medical University of Bialystok, Poland (SUB/1/DN/20/006/1104, to Xiangdong Li).
Author information
Authors and Affiliations
Contributions
XL designed the study concept and supervised the project and analyzed the data. PL, RS and XL interpreted the data. PL, RS and YD conducted the experiments. PL, RS and HL analyzed RNA-seq and microarray data. All authors approved the final content.
Corresponding author
Ethics declarations
Conflict of interests
The authors declare that they have no conflict of interest.
Ethics approval
All animal studies were approved by the ethical committee of the China Agricultural University (No.: AW32201202-3-2).
Consent to participate
Not applicable. No human subjects were recruited for this study.
Consent for publication
Not applicable.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary Information
Below is the link to the electronic supplementary material.
18_2022_4441_MOESM7_ESM.pdf
Figure S1 (A-D) The expression heatmaps of the 5 overlapping genes in cold exposure at 4°C or CL316,243 treatment in mice BAT and iWAT (GEO: GSE86338, GSE104285, GSE13432, and GSE129083). Figure S2 (A) A schematic illustration of the strategy of generating the Adtrp KO mouse with the CRISPR/Cas9 system. (B) Genotyping of the Adtrp KO mice with two pairs of primers. (C-D) RT-qPCR analysis of Adtrp in BAT and Liver of Adtrp KO and WT mice (n = 5). Error bars represent the means ± SEM of three independent experiments, ***p < 0.001. Figure S3 (A) Body weights of Adtrp KO and WT mice at the age of 14 weeks (n = 10). (B) Histopathological images of liver from Adtrp KO and WT mice at the age of 8 weeks (n = 4, Scale bars, 50 μm). (C and D) Food and water intakes of Adtrp KO and WT mice in 24 h at the age of 8 weeks (n = 6). (E and F) GTT and ITT of Adtrp KO and WT mice (n = 5). (G and H) Statistics of the OCR data of Adtrp KO and WT differentiated BAT or iWAT SVF adipocytes. (I and J) Statistics of the ECAR data of Adtrp KO and WT differentiated BAT or iWAT SVF adipocytes. Error bars represent the means ± SEM of three independent experiments. *p < 0.05, **p < 0.01, ***p < 0.001, ns: nonstatistical significance. Figure S4 (A) EE of Adtrp KO and WT mice in metabolic cages at age of 8 weeks with 16°C cold exposure (n = 6). (B and C) Food and water intake of Adtrp KO and WT mice in 24 h at the age of 8 weeks with 16°C cold exposure (n = 6). (D) Statistics of AUC data of EE about Adtrp KO and WT mice at 25°C and 16°C. (E) The core body temperatures of 7 days’ CL316,243 treated Adtrp KO and WT mice at different time points after exposure to cold at 4°C (n = 5). Error bars represent the means ± SEM of three independent experiments. *p < 0.05, **p < 0.01, ***p < 0.001, ns: nonstatistical significance. Figure S5 (A) List of the predicted interaction proteins with ADTRP. (B) IP by anti-GFP antibody bond A/G magnetic beads, and western blot analyses of Creb3 and Adtrp in 293T cells. (C and D) RT-qPCR analysis of S100b in BAT and iWAT of Adtrp KO and WT mice (n = 5). Error bars represent the means ± SEM of three independent experiments, ns: nonstatistical significance (PDF 5074 kb)
Rights and permissions
About this article
Cite this article
Li, P., Song, R., Du, Y. et al. Adtrp regulates thermogenic activity of adipose tissue via mediating the secretion of S100b. Cell. Mol. Life Sci. 79, 407 (2022). https://doi.org/10.1007/s00018-022-04441-9
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/s00018-022-04441-9