Skip to main content

Advertisement

Log in

ATP-binding cassette (ABC) drug transporters in the developing blood–brain barrier: role in fetal brain protection

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

The blood–brain barrier (BBB) provides essential neuroprotection from environmental toxins and xenobiotics, through high expression of drug efflux transporters in endothelial cells of the cerebral capillaries. However, xenobiotic exposure, stress, and inflammatory stimuli have the potential to disrupt BBB permeability in fetal and post-natal life. Understanding the role and ability of the BBB in protecting the developing brain, particularly with respect to drug/toxin transport, is key to promoting long-term brain health. Drug transporters, particularly P-gp and BCRP are expressed in early gestation at the developing BBB and have a crucial role in developmental homeostasis and fetal brain protection. We have highlighted several factors that modulate drug transporters at the developing BBB, including synthetic glucocorticoid (sGC), cytokines, maternal infection, and growth factors. Some factors have the potential to increase expression and function of drug transporters and increase brain protection (e.g., sGC, transforming growth factor [TGF]-β). However, others inhibit drug transporters expression and function at the BBB, increasing brain exposure to xenobiotics (e.g., tumor necrosis factor [TNF], interleukin [IL]-6), negatively impacting brain development. This has implications for pregnant women and neonates, who represent a vulnerable population and may be exposed to drugs and environmental toxins, many of which are P-gp and BCRP substrates. Thus, alterations in regulated transport across the developing BBB may induce long-term changes in brain health and compromise pregnancy outcome. Furthermore, a large portion of neonatal adverse drug reactions are attributed to agents that target or access the nervous system, such as stimulants (e.g., caffeine), anesthetics (e.g., midazolam), analgesics (e.g., morphine) and antiretrovirals (e.g., Zidovudine); thus, understanding brain protection is key for the development of strategies to protect the fetal and neonatal brain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

Enquiries about data availability should be directed to the authors.

References

  1. Daneman R, Prat A (2015) The blood-brain barrier. Cold Spring Harb Perspect Biol 7:a020412. https://doi.org/10.1101/cshperspect.a020412

    Article  PubMed  PubMed Central  Google Scholar 

  2. Daneman R (2012) The blood-brain barrier in health and disease. Ann Neurol 72:648–672. https://doi.org/10.1002/ana.23648

    Article  CAS  PubMed  Google Scholar 

  3. Al-Majdoub ZM, Al Feteisi H, Achour B et al (2019) Proteomic quantification of human blood-brain barrier SLC and ABC transporters in healthy individuals and dementia patients. Mol Pharm 16:1220–1233. https://doi.org/10.1021/acs.molpharmaceut.8b01189

    Article  CAS  PubMed  Google Scholar 

  4. Abbott NJ, Patabendige AAK, Dolman DEM et al (2010) Structure and function of the blood-brain barrier. Neurobiol Dis 37:13–25. https://doi.org/10.1016/j.nbd.2009.07.030

    Article  CAS  PubMed  Google Scholar 

  5. Oldendorf WH, Cornford ME, Brown WJ (1977) The large apparent work capability of the blood-brain barrier: a study of the mitochondrial content of capillary endothelial cells in brain and other tissues of the rat. Ann Neurol 1:409–417. https://doi.org/10.1002/ana.410010502

    Article  CAS  PubMed  Google Scholar 

  6. Malinovskaya NA, Komleva YK, Salmin VV et al (2016) Endothelial progenitor cells physiology and metabolic plasticity in brain angiogenesis and blood-brain barrier modeling. Front Physiol 7:599. https://doi.org/10.3389/fphys.2016.00599

    Article  PubMed  PubMed Central  Google Scholar 

  7. Wolburg H, Lippoldt A, Ebnet K (2007) Tight junctions in the blood-brain barrier. In: Handbook of neurochemistry and molecular neurobiology: neural membranes and transport. pp 1–27

  8. Kniesel U, Wolburg H (2000) Tight junctions of the blood-brain barrier. Cell Mol Neurobiol 20:57–76. https://doi.org/10.1023/a:1006995910836

    Article  CAS  PubMed  Google Scholar 

  9. Liebner S, Czupalla CJ, Wolburg H (2011) Current concepts of blood-brain barrier development. Int J Dev Biol 55:467–476. https://doi.org/10.1387/ijdb.103224sl

    Article  CAS  PubMed  Google Scholar 

  10. Furuse M, Hirase T, Itoh M et al (1993) Occludin: a novel integral membrane protein localizing at tight junctions. J Cell Biol 123:1777–1788. https://doi.org/10.1083/jcb.123.6.1777

    Article  CAS  PubMed  Google Scholar 

  11. Krause G, Winkler L, Mueller SL et al (2008) Structure and function of claudins. Biochim Biophys Acta Biomembr 1778:631–645. https://doi.org/10.1016/J.BBAMEM.2007.10.018

    Article  CAS  Google Scholar 

  12. Nitta T, Hata M, Gotoh S et al (2001) Size-selective loosening of the blood-brain barrier in claudin-5–deficient mice. J Cell Biol 161:653–660. https://doi.org/10.1083/jcb.200302070

    Article  CAS  Google Scholar 

  13. Ohno K, Pettigrew KD, Rapoport SI (1978) Lower limits of cerebrovascular permeability to nonelectrolytes in the conscious rat. Am J Physiol 235:H299-307

    CAS  PubMed  Google Scholar 

  14. Butt AM, Jones HC, Abbott NJ (1990) Electrical resistance across the blood-brain barrier in anaesthetized rats: a developmental study. J Physiol 429:47–62. https://doi.org/10.1113/jphysiol.1990.sp018243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Abbott NJ (2013) Blood-brain barrier structure and function and the challenges for CNS drug delivery. J Inherit Metab Dis 36:437–449. https://doi.org/10.1007/s10545-013-9608-0

    Article  CAS  PubMed  Google Scholar 

  16. Winkler EA, Bell RD, Zlokovic BV (2011) Central nervous system pericytes in health and disease. Nat Neurosci 14:1398–1405

    Article  CAS  Google Scholar 

  17. Daneman R, Zhou L, Kebede AA, Barres BA (2010) Pericytes are required for blood-brain barrier integrity during embryogenesis. Nature 468:562–566. https://doi.org/10.1038/nature09513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ben-Zvi A, Lacoste B, Kur E et al (2014) Mfsd2a is critical for the formation and function of the blood-brain barrier. Nature 509:507–511. https://doi.org/10.1038/nature13324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Armulik A, Genové G, Mäe M et al (2010) Pericytes regulate the blood-brain barrier. Nature 468:557–561. https://doi.org/10.1038/nature09522

    Article  CAS  PubMed  Google Scholar 

  20. Villaseñor R, Kuennecke B, Ozmen L et al (2017) Region-specific permeability of the blood–brain barrier upon pericyte loss. J Cereb Blood Flow Metab 37:3683–3694. https://doi.org/10.1177/0271678X17697340

    Article  PubMed  PubMed Central  Google Scholar 

  21. Dohgu S, Takata F, Yamauchi A et al (2005) Brain pericytes contribute to the induction and up-regulation of blood-brain barrier functions through transforming growth factor-β production. Brain Res 1038:208–215. https://doi.org/10.1016/j.brainres.2005.01.027

    Article  CAS  PubMed  Google Scholar 

  22. Kong J, Qiu Y, Li Y et al (2019) TGF-β1 elevates P-gp and BCRP in hepatocellular carcinoma through HOTAIR/miR-145 axis. Biopharm Drug Dispos 40:70–80. https://doi.org/10.1002/bdd.2172

    Article  CAS  PubMed  Google Scholar 

  23. Berezowski V, Landry C, Dehouck MP et al (2004) Contribution of glial cells and pericytes to the mRNA profiles of P-glycoprotein and multidrug resistance-associated proteins in an in vitro model of the blood-brain barrier. Brain Res 1018:1–9. https://doi.org/10.1016/j.brainres.2004.05.092

    Article  CAS  PubMed  Google Scholar 

  24. Abbott NJ (2002) Astrocyte-endothelial interactions and blood-brain barrier permeability. J Anat 200:629–638

    Article  CAS  Google Scholar 

  25. Abbott NJ, Rönnbäck L, Hansson E (2006) Astrocyte–endothelial interactions at the blood–brain barrier. Nat Rev Neurosci 7:41–53. https://doi.org/10.1038/nrn1824

    Article  CAS  PubMed  Google Scholar 

  26. Dehouck M-P, Méresse S, Delorme P et al (1990) An easier, reproducible, and mass-production method to study the blood-brain barrier in vitro. J Neurochem 54:1798–1801. https://doi.org/10.1111/j.1471-4159.1990.tb01236.x

    Article  CAS  PubMed  Google Scholar 

  27. Baello S, Iqbal M, Gibb W, Matthews SG (2016) Astrocyte-mediated regulation of multidrug resistance P-glycoprotein in fetal and neonatal brain endothelial cells: age-dependent effects. Physiol Rep 4:1–17. https://doi.org/10.14814/phy2.12853

    Article  CAS  Google Scholar 

  28. Abbott NJ, Rönnbäck L, Hansson E (2006) Astrocyte-endothelial interactions at the blood-brain barrier. Nat Rev Neurosci 7:41–53

    Article  CAS  Google Scholar 

  29. Duan L, Di Q (2017) Acetazolamide suppresses multi-drug resistance-related protein 1 and P-Glycoprotein expression by inhibiting aquaporins expression in a mesial temporal epilepsy rat model. Med Sci Monit 23:5818–5825. https://doi.org/10.12659/MSM.903855

    Article  PubMed  PubMed Central  Google Scholar 

  30. Locher KP (2016) Mechanistic diversity in ATP-binding cassette (ABC) transporters. Nat Struct Mol Biol 23:487–493. https://doi.org/10.1038/nsmb.3216

    Article  CAS  PubMed  Google Scholar 

  31. Linton KJ (2007) Structure and function of ABC transporters. Physiol 22:122–130. https://doi.org/10.1152/physiol.00046.2006

    Article  CAS  Google Scholar 

  32. Juliano RL, Ling V (1976) A surface glycoprotein modulating drug permeability in Chinese hamster ovary cell mutants. Biochim Biophys Acta - Biomembr 455:152–162. https://doi.org/10.1016/0005-2736(76)90160-7

    Article  CAS  Google Scholar 

  33. Austin Doyle L, Yang W, Abruzzo LV et al (1998) A multidrug resistance transporter from human MCF-7 breast cancer cells. Proc Natl Acad Sci USA 95:15665–15670. https://doi.org/10.1073/pnas.95.26.15665

    Article  PubMed Central  Google Scholar 

  34. Shawahna R, Uchida Y, Decleves X et al (2011) Transcriptomic and quantitative proteomic analysis of transporters and drug metabolizing enzymes in freshly isolated human brain microvessels. Mol Pharm 8:1332–1341. https://doi.org/10.1021/mp200129p

    Article  CAS  PubMed  Google Scholar 

  35. Uchida Y, Ohtsuki S, Katsukura Y et al (2011) Quantitative targeted absolute proteomics of human blood-brain barrier transporters and receptors. J Neurochem 117:333–345. https://doi.org/10.1111/j.1471-4159.2011.07208.x

    Article  CAS  PubMed  Google Scholar 

  36. Saidijam M, Karimi Dermani F, Sohrabi S, Patching SG (2018) Efflux proteins at the blood-brain barrier: review and bioinformatics analysis. Xenobiotica 48:506–532. https://doi.org/10.1080/00498254.2017.1328148

    Article  CAS  PubMed  Google Scholar 

  37. Bloise E, Ortiga-Carvalho TM, Reis FM et al (2016) ATP-binding cassette transporters in reproduction: a new frontier. Hum Reprod Updat 22:164–181. https://doi.org/10.1093/humupd/dmv049

    Article  CAS  Google Scholar 

  38. Sharom FJ (2008) ABC multidrug transporters: structure, function and role in chemoresistance. Pharmacogenomics 9:105–127. https://doi.org/10.2217/14622416.9.1.105

    Article  CAS  PubMed  Google Scholar 

  39. Löscher W, Potschka H (2005) Blood-brain barrier active efflux transporters: ATP-binding cassette gene family. NeuroRx 2:86–98. https://doi.org/10.1602/neurorx.2.1.86

    Article  PubMed  PubMed Central  Google Scholar 

  40. Sandoval Karamian AG, Wusthoff CJ (2019) Antiepileptic drug therapy in neonates. Elsevier Inc, Amsterdam

    Book  Google Scholar 

  41. Voinescu PE, Pennell PB (2015) Management of epilepsy during pregnancy. Expert Rev Neurother 15:1171–1187. https://doi.org/10.1586/14737175.2015.1083422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Löscher W, Potschka H (2005) Drug resistance in brain diseases and the role of drug efflux transporters. Nat Rev Neurosci 6:591–602. https://doi.org/10.1038/nrn1728

    Article  CAS  PubMed  Google Scholar 

  43. Connor EM, Sperling RS, Gelber R et al (1994) Reduction of maternal-infant transmission of human immunodeficiency virus type 1 with zidovudine treatment. Pediatric AIDS Clinical Trials Group Protocol 076 Study Group. N Engl J Med 331:1173–1180. https://doi.org/10.1056/NEJM199411033311801

    Article  CAS  PubMed  Google Scholar 

  44. Filia MF, Marchini T, Minoia JM et al (2017) Induction of ABCG2/BCRP restricts the distribution of zidovudine to the fetal brain in rats. Toxicol Appl Pharmacol 330:74–83. https://doi.org/10.1016/j.taap.2017.07.005

    Article  CAS  PubMed  Google Scholar 

  45. Panel on Antiretroviral Therapy and Medical Management of Children Living with HIV Guidelines for the Use of Antiretroviral Agents in Pediatric HIV Infection. https://clinicalinfo.hiv.gov/en/guidelines/pediatric-arv

  46. Lambert JS, Nogueira SA, Abreu T et al (2003) A pilot study to evaluate the safety and feasibility of the administration of AZT/3TC fixed dose combination to HIV infected pregnant women and their infants in Rio de Janeiro, Brazil. Sex Transm Infect 79:448–452. https://doi.org/10.1136/sti.79.6.448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Allegaert K, van den Anker JN (2016) Neonatal pain management: still in search for the Holy Grail. Int J Clin Pharmacol Ther 54:514–523. https://doi.org/10.5414/CP202561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. L. Mercer S, Coop A, (2011) Opioid analgesics and P-glycoprotein efflux transporters: a potential systems-level contribution to analgesic tolerance. Curr Top Med Chem 11:1157–1164. https://doi.org/10.2174/156802611795371288

    Article  Google Scholar 

  49. Ornoy A, Weinstein-Fudim L, Ergaz Z (2017) Antidepressants, antipsychotics, and mood stabilizers in pregnancy: what do we know and how should we treat pregnant women with depression. Birth Defects Res 109:933–956. https://doi.org/10.1002/bdr2.1079

    Article  CAS  PubMed  Google Scholar 

  50. Schinkel AH, Wagenaar E, Mol CAAM, Van Deemter L (1996) P-glycoprotein in the blood-brain barrier of mice influences the brain penetration and pharmacological activity of many drugs. J Clin Invest 97:2517–2524. https://doi.org/10.1172/JCI118699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Miller DS, Nobmann SN, Gutmann H et al (2000) Xenobiotic transport across isolated brain microvessels studied by confocal microscopy. Mol Pharmacol 58:1357–1367. https://doi.org/10.1124/MOL.58.6.1357

    Article  CAS  PubMed  Google Scholar 

  52. Beaulieu E, Demeule M, Ghitescu L, Béliveau R (1997) P-glycoprotein is strongly expressed in the luminal membranes of the endothelium of blood vessels in the brain. Biochem J 326(Pt 2):539–544. https://doi.org/10.1042/bj3260539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Fu D, Bebawy M, Kable EP, Roufogalis BD (2004) Dynamic and intracellular trafficking of P-glycoprotein-EGFP fusion protein: implications in multidrug resistance in cancer. Int J Cancer 109:174–181. https://doi.org/10.1002/ijc.11659

    Article  CAS  PubMed  Google Scholar 

  54. Fu D, Roufogalis BD (2007) Actin disruption inhibits endosomal traffic of P-glycoprotein-EGFP and resistance to daunorubicin accumulation. Am J Physiol Cell Physiol 292:C1543–C1552. https://doi.org/10.1152/ajpcell.00068.2006

    Article  CAS  PubMed  Google Scholar 

  55. Lavie Y, Fiucci G, Liscovitch M (1998) Up-regulation of caveolae and caveolar constituents in multidrug-resistant cancer cells. J Biol Chem 273:32380–32383. https://doi.org/10.1074/jbc.273.49.32380

    Article  CAS  PubMed  Google Scholar 

  56. Yamori T, Ota DM, Cleary KR, Irimura T (1988) Increased content of chondroitin sulfate proteoglycan in human colorectal carcinoma metastases compared with the primary tumor as determined by an anti-chondroitin-sulfate monoclonal antibody. J Cell Biochem 36:405–416. https://doi.org/10.1002/jcb.240360409

    Article  CAS  PubMed  Google Scholar 

  57. Greer DA, Ivey S (2007) Distinct N-glycan glycosylation of P-glycoprotein isolated from the human uterine sarcoma cell line MES-SA/Dx5. Biochim Biophys Acta - Gen Subj 1770:1275–1282. https://doi.org/10.1016/j.bbagen.2007.07.005

    Article  CAS  Google Scholar 

  58. Loo TW, Bartlett MC, Clarke DM (2004) Thapsigargin or curcumin does not promote maturation of processing mutants of the ABC transporters, CFTR, and P-glycoprotein. Biochem Biophys Res Commun 325:580–585. https://doi.org/10.1016/j.bbrc.2004.10.070

    Article  CAS  PubMed  Google Scholar 

  59. Decleves X, Regina A, Laplanche JL et al (2000) Functional expression of P-glycoprotein and multidrug resistance-associated protein (Mrp1) in primary cultures of rat astrocytes. J Neurosci Res 60:594–601. https://doi.org/10.1002/(SICI)1097-4547(20000601)60:5%3c594::AID-JNR4%3e3.0.CO;2-6

    Article  CAS  PubMed  Google Scholar 

  60. Ronaldson PT, Bendayan M, Gingras D et al (2004) Cellular localization and functional expression of P-glycoprotein in rat astrocyte cultures. J Neurochem 89:788–800. https://doi.org/10.1111/j.1471-4159.2004.02417.x

    Article  CAS  PubMed  Google Scholar 

  61. Schlachetzki F, Pardridge WM (2003) P-glycoprotein and caveolin-1α in endothelium and astrocytes of primate brain. NeuroReport 14:2041–2046. https://doi.org/10.1097/00001756-200311140-00007

    Article  CAS  PubMed  Google Scholar 

  62. Schinkel AH, Smit JJM, van Tellingen O et al (1994) Disruption of the mouse mdr1a P-glycoprotein gene leads to a deficiency in the blood-brain barrier and to increased sensitivity to drugs. Cell 77:491–502. https://doi.org/10.1016/0092-8674(94)90212-7

    Article  CAS  PubMed  Google Scholar 

  63. Schinkel AH, Wagenaar E, van Deemter L et al (1995) Absence of the mdr1a P-Glycoprotein in mice affects tissue distribution and pharmacokinetics of dexamethasone, digoxin, and cyclosporin A. J Clin Invest 96:1698–1705. https://doi.org/10.1172/JCI118214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Lankas GR, Wise LD, Cartwright ME et al (1998) Placental P-glycoprotein deficiency enhances susceptibility to chemically induced birth defects in mice. Reprod Toxicol 12:457–463

    Article  CAS  Google Scholar 

  65. Daud ANA, Bergman JEH, Bakker MK et al (2015) P-glycoprotein-mediated drug interactions in pregnancy and changes in the risk of congenital anomalies: a case-reference study. Drug Saf 38:651–659. https://doi.org/10.1007/s40264-015-0299-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Cordon-Cardo C, O’Brien JP, Casals D et al (1989) Multidrug-resistance gene (P-glycoprotein) is expressed by endothelial cells at blood-brain barrier sites. Proc Natl Acad Sci U S A 86:695–698. https://doi.org/10.1073/pnas.86.2.695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Thiebaut F, Tsuruo T, Hamada H et al (1989) Immunohistochemical localization in normal tissues of different epitopes in the multidrug transport protein P170: evidence for localization in brain capillaries and crossreactivity of one antibody with a muscle protein. J Histochem Cytochem 37:159–164. https://doi.org/10.1177/37.2.2463300

    Article  CAS  PubMed  Google Scholar 

  68. Aday S, Cecchelli R, Hallier-Vanuxeem D et al (2016) Stem cell-based human blood-brain barrier models for drug discovery and delivery. Trends Biotechnol 34:382–393. https://doi.org/10.1016/J.TIBTECH.2016.01.001

    Article  CAS  PubMed  Google Scholar 

  69. Dauchy S, Dutheil F, Weaver RJ et al (2008) ABC transporters, cytochromes P450 and their main transcription factors: expression at the human blood-brain barrier. J Neurochem 107:1518–1528. https://doi.org/10.1111/j.1471-4159.2008.05720.x

    Article  CAS  PubMed  Google Scholar 

  70. Ni Z, Bikadi Z, Rosenberg MF, Mao Q (2010) Structure and function of the human breast cancer resistance protein (BCRP/ABCG2). Curr Drug Metab 11:603–617

    Article  CAS  Google Scholar 

  71. Han B, Zhang JT (2004) Multidrug resistance in cancer chemotherapy and xenobiotic protection mediated by the half ATP-binding cassette transporter ABCG2. Curr Med Chem Anticancer Agents 4:31–42

    Article  CAS  Google Scholar 

  72. Marchetti S, de Vries NA, Buckle T et al (2008) Effect of the ATP-binding cassette drug transporters ABCB1, ABCG2, and ABCC2 on erlotinib hydrochloride (Tarceva) disposition in in vitro and in vivo pharmacokinetic studies employing Bcrp1-/-/Mdr1a/1b-/- (triple-knockout) and wild-type mice. Mol Cancer Ther 7:2280–2287. https://doi.org/10.1158/1535-7163.MCT-07-2250

    Article  CAS  PubMed  Google Scholar 

  73. Marchetti S, Pluim D, van Eijndhoven M et al (2013) Effect of the drug transporters ABCG2, Abcg2, ABCB1 and ABCC2 on the disposition, brain accumulation and myelotoxicity of the aurora kinase B inhibitor barasertib and its more active form barasertib-hydroxy-QPA. Invest New Drugs 31:1125–1135. https://doi.org/10.1007/s10637-013-9923-1

    Article  CAS  PubMed  Google Scholar 

  74. Bhatia P, Bernier M, Sanghvi M et al (2012) Breast cancer resistance protein (BCRP/ABCG2) localises to the nucleus in glioblastoma multiforme cells. Xenobiotica 42:748–755. https://doi.org/10.3109/00498254.2012.662726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Lemos C, Kathmann I, Giovannetti E et al (2009) Impact of cellular folate status and epidermal growth factor receptor expression on BCRP/ABCG2-mediated resistance to gefitinib and erlotinib. Br J Cancer 100:1120–1127. https://doi.org/10.1038/sj.bjc.6604980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Solazzo M, Fantappie O, D’Amico M et al (2009) Mitochondrial expression and functional activity of breast cancer resistance protein in different multiple drug-resistant cell lines. Cancer Res 69:7235–7242. https://doi.org/10.1158/0008-5472.CAN-08-4315

    Article  CAS  PubMed  Google Scholar 

  77. Kodaira H, Kusuhara H, Ushiki J et al (2010) Kinetic analysis of the cooperation of P-glycoprotein (P-gp/Abcb1) and breast cancer resistance protein (Bcrp/Abcg2) in limiting the brain and testis penetration of erlotinib, flavopiridol, and mitoxantrone. J Pharmacol Exp Ther 333:788–796. https://doi.org/10.1124/jpet.109.162321

    Article  CAS  PubMed  Google Scholar 

  78. Oberoi RK, Mittapalli RK, Elmquist WF (2013) Pharmacokinetic assessment of efflux transport in sunitinib distribution to the brain. J Pharmacol Exp Ther 347:755–764. https://doi.org/10.1124/jpet.113.208959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Agarwal S, Hartz AMS, Elmquist WF, Bauer B (2011) Breast cancer resistance protein and P-glycoprotein in brain cancer: two gatekeepers team up. Curr Pharm Des 17:2793–2802

    Article  CAS  Google Scholar 

  80. Bauer M, Römermann K, Karch R et al (2016) Pilot PET study to assess the functional interplay between ABCB1 and ABCG2 at the human blood-brain barrier. Clin Pharmacol Ther 100:131–141. https://doi.org/10.1002/cpt.362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Poller B, Wagenaar E, Tang SC, Schinkel AH (2011) Double-transduced MDCKII cells to study human P-glycoprotein (ABCB1) and breast cancer resistance protein (ABCG2) interplay in drug transport across the blood-brain barrier. Mol Pharm 8:571–582. https://doi.org/10.1021/mp1003898

    Article  CAS  PubMed  Google Scholar 

  82. Sisodiya SM, Martinian L, Scheffer GL et al (2006) Vascular colocalization of P-glycoprotein, multidrug-resistance associated protein 1, breast cancer resistance protein and major vault protein in human epileptogenic pathologies. Neuropathol Appl Neurobiol 32:51–63. https://doi.org/10.1111/j.1365-2990.2005.00699.x

    Article  CAS  PubMed  Google Scholar 

  83. de Vries NA, Zhao J, Kroon E et al (2007) P-glycoprotein and breast cancer resistance protein: two dominant transporters working together in limiting the brain penetration of topotecan. Clin Cancer Res 13:6440–6449. https://doi.org/10.1158/1078-0432.CCR-07-1335

    Article  CAS  PubMed  Google Scholar 

  84. Polli JW, Olson KL, Chism JP et al (2009) An unexpected synergist role of P-glycoprotein and breast cancer resistance protein on the central nervous system penetration of the tyrosine kinase inhibitor lapatinib (N-{3-chloro-4-[(3-fluorobenzyl)oxy]phenyl}-6-[5-({[2-(methylsulfonyl)ethyl]amino }met. Drug Metab Dispos 37:439–442. https://doi.org/10.1124/dmd.108.024646

    Article  CAS  PubMed  Google Scholar 

  85. Lagas JS, van Waterschoot RA, van Tilburg VA et al (2009) Brain accumulation of dasatinib is restricted by P-glycoprotein (ABCB1) and breast cancer resistance protein (ABCG2) and can be enhanced by elacridar treatment. Clin Cancer Res 15:2344–2351. https://doi.org/10.1158/1078-0432.CCR-08-2253

    Article  CAS  PubMed  Google Scholar 

  86. Lagas JS, van Waterschoot RA, Sparidans RW et al (2010) Breast cancer resistance protein and P-glycoprotein limit sorafenib brain accumulation. Mol Cancer Ther 9:319–326. https://doi.org/10.1158/1535-7163.MCT-09-0663

    Article  CAS  PubMed  Google Scholar 

  87. Tang SC, de Vries N, Sparidans RW et al (2013) Impact of P-glycoprotein (ABCB1) and breast cancer resistance protein (ABCG2) gene dosage on plasma pharmacokinetics and brain accumulation of dasatinib, sorafenib, and sunitinib. J Pharmacol Exp Ther 346:486–494. https://doi.org/10.1124/jpet.113.205583

    Article  CAS  PubMed  Google Scholar 

  88. Agarwal S, Elmquist WF (2012) Insight into the cooperation of P-glycoprotein (ABCB1) and breast cancer resistance protein (ABCG2) at the blood-brain barrier: a case study examining sorafenib efflux clearance. Mol Pharm 9:678–684. https://doi.org/10.1021/mp200465c

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Cisternino S, Mercier C, Bourasset F et al (2004) Expression, up-regulation, and transport activity of the multidrug-resistance protein Abcg2 at the mouse blood-brain barrier. Cancer Res 64:3296–3301

    Article  CAS  Google Scholar 

  90. do Imperio GE, Bloise E, Javam M, et al (2018) Chorioamnionitis induces a specific signature of placental ABC transporters associated with an increase of miR-331-5p in the human preterm placenta. Cell Physiol Biochem 45:591–604. https://doi.org/10.1159/000487100

    Article  CAS  Google Scholar 

  91. Xiong H, Callaghan D, Jones A et al (2009) ABCG2 is upregulated in Alzheimer’s brain with cerebral amyloid angiopathy and may act as a gatekeeper at the blood-brain barrier for Abeta(1–40) peptides. J Neurosci 29:5463–5475. https://doi.org/10.1523/JNEUROSCI.5103-08.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Eustaquio Do Imperio G, Lye P, Bloise E, Matthews SG (2021) Function of multidrug resistance transporters is disrupted by infection mimics in human brain endothelial cells. Tissue barriers 9:1860616. https://doi.org/10.1080/21688370.2020.1860616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Hipfner DR, Deeley RG, Cole SP (1999) Structural, mechanistic and clinical aspects of MRP1. Biochim Biophys Acta 1461:359–376. https://doi.org/10.1016/s0005-2736(99)00168-6

    Article  CAS  PubMed  Google Scholar 

  94. Nies AT, Jedlitschky G, Konig J et al (2004) Expression and immunolocalization of the multidrug resistance proteins, MRP1-MRP6 (ABCC1-ABCC6), in human brain. Neuroscience 129:349–360. https://doi.org/10.1016/j.neuroscience.2004.07.051

    Article  CAS  PubMed  Google Scholar 

  95. Suhy AM, Webb A, Papp AC et al (2017) Expression and splicing of ABC and SLC transporters in the human blood-brain barrier measured with RNAseq. Eur J Pharm Sci 103:47–51. https://doi.org/10.1016/J.EJPS.2017.02.010

    Article  CAS  PubMed  Google Scholar 

  96. Daood M, Tsai C, Ahdab-Barmada M, Watchko JF (2008) ABC transporter (P-gp/ABCB1, MRP1/ABCC1, BCRP/ABCG2) expression in the developing human CNS. Neuropediatrics 39:211–218. https://doi.org/10.1055/s-0028-1103272

    Article  CAS  PubMed  Google Scholar 

  97. Gazzin S, Berengeno AL, Strazielle N et al (2011) Modulation of Mrp1 (ABCc1) and Pgp (ABCb1) by bilirubin at the blood-CSF and blood-brain barriers in the Gunn rat. PLoS ONE 6:e16165. https://doi.org/10.1371/journal.pone.0016165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Gazzin S, Strazielle N, Schmitt C et al (2008) Differential expression of the multidrug resistance-related proteins ABCb1 and ABCc1 between blood-brain interfaces. J Comp Neurol 510:497–507. https://doi.org/10.1002/cne.21808

    Article  CAS  PubMed  Google Scholar 

  99. Rao VV, Dahlheimer JL, Bardgett ME et al (1999) Choroid plexus epithelial expression of MDR1 P glycoprotein and multidrug resistance-associated protein contribute to the blood-cerebrospinal-fluid drug-permeability barrier. Proc Natl Acad Sci USA 96:3900–3905. https://doi.org/10.1073/pnas.96.7.3900

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Hartz AM, Bauer B (2010) Regulation of ABC transporters at the blood-brain barrier: new targets for CNS therapy. Mol Interv 10:293–304. https://doi.org/10.1124/mi.10.5.6

    Article  CAS  PubMed  Google Scholar 

  101. Hayashi K, Pu H, Andras IE et al (2006) HIV-TAT protein upregulates expression of multidrug resistance protein 1 in the blood-brain barrier. J Cereb Blood Flow Metab 26:1052–1065. https://doi.org/10.1038/sj.jcbfm.9600254

    Article  CAS  PubMed  Google Scholar 

  102. Potschka H, Fedrowitz M, Loscher W (2003) Multidrug resistance protein MRP2 contributes to blood-brain barrier function and restricts antiepileptic drug activity. J Pharmacol Exp Ther 306:124–131. https://doi.org/10.1124/jpet.103.049858

    Article  CAS  PubMed  Google Scholar 

  103. Mack J, Townsend D, Beljanski V, Tew K (2006) The ABCA2 transporter: intracellular roles in trafficking and metabolism of LDL-derived cholesterol and sterol-related compounds. Curr Drug Metab 8:47–57. https://doi.org/10.2174/138920007779315044

    Article  Google Scholar 

  104. Kim WS, Weickert CS, Garner B (2008) Role of ATP-binding cassette transporters in brain lipid transport and neurological disease. J Neurochem 104:1145–1166

    Article  CAS  Google Scholar 

  105. Wolf A, Bauer B, Hartz AM (2012) ABC transporters and the Alzheimer’s disease enigma. Front Psychiatry 3:54. https://doi.org/10.3389/fpsyt.2012.00054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Mawuenyega KG, Sigurdson W, Ovod V et al (2010) Decreased clearance of CNS beta-amyloid in Alzheimer’s disease. Science 330:1774. https://doi.org/10.1126/science.1197623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Elali A, Rivest S (2013) The role of ABCB1 and ABCA1 in beta-amyloid clearance at the neurovascular unit in Alzheimer’s disease. Front Physiol. https://doi.org/10.3389/fphys.2013.00045

    Article  PubMed  PubMed Central  Google Scholar 

  108. Saunders NR, Dziegielewska KM, Møllgård K, Habgood MD (2019) Recent developments in understanding barrier mechanisms in the developing brain: drugs and drug transporters in pregnancy, susceptibility or protection in the fetal brain? Annu Rev Pharmacol Toxicol 59:487–505. https://doi.org/10.1146/annurev-pharmtox-010818-021430

    Article  CAS  PubMed  Google Scholar 

  109. Engelhardt B, Liebner S (2014) Novel insights into the development and maintenance of the blood-brain barrier. Cell Tissue Res 355:687–699

    Article  CAS  Google Scholar 

  110. Bauer HC, Bauer H, Lametschwandtner A et al (1993) Neovascularization and the appearance of morphological characteristics of the blood-brain barrier in the embryonic mouse central nervous system. Dev Brain Res 75:269–278. https://doi.org/10.1016/0165-3806(93)90031-5

    Article  CAS  Google Scholar 

  111. Ek CJ, Dziegielewska KM, Habgood MD, Saunders NR (2012) Barriers in the developing brain and neurotoxicology. Neurotoxicology 33:586–604. https://doi.org/10.1016/j.neuro.2011.12.009

    Article  CAS  PubMed  Google Scholar 

  112. Obermeier B, Daneman R, Ransohoff RM (2013) Development, maintenance and disruption of the blood-brain barrier. Nat Med 19:1584–1596. https://doi.org/10.1038/nm.3407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Liebner S, Plate KH (2010) Differentiation of the brain vasculature: the answer came blowing by the Wnt. J Angiogenes Res 2:1. https://doi.org/10.1186/2040-2384-2-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Qian T, Maguire SE, Canfield SG et al (2017) Directed differentiation of human pluripotent stem cells to blood-brain barrier endothelial cells. Sci Adv 3:e1701679. https://doi.org/10.1126/sciadv.1701679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Lim JC, Kania KD, Wijesuriya H et al (2008) Activation of beta-catenin signalling by GSK-3 inhibition increases p-glycoprotein expression in brain endothelial cells. J Neurochem 106:1855–1865. https://doi.org/10.1111/j.1471-4159.2008.05537.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Harati R, Benech H, Villégier AS, Mabondzo A (2013) P-glycoprotein, breast cancer resistance protein, organic anion transporter 3, and transporting peptide 1a4 during blood-brain barrier maturation: involvement of Wnt/β-catenin and endothelin-1 signaling. Mol Pharm 10:1566–1580. https://doi.org/10.1021/mp300334r

    Article  CAS  PubMed  Google Scholar 

  117. Baello S, Iqbal M, Bloise E et al (2014) TGF-β1 regulation of multidrug resistance P-glycoprotein in the developing male blood-brain barrier. Endocrinology 155:475–484. https://doi.org/10.1210/en.2013-1472

    Article  PubMed  Google Scholar 

  118. Hawkins BT, Davis TP, Avemary J et al (2016) Glucocorticoids modify effects of TGF-beta1 on multidrug resistance in the fetal blood-brain barrier. Placenta 17:475–484. https://doi.org/10.1111/j.1471-4159.2006.04410.x

    Article  CAS  Google Scholar 

  119. Møllgård K, Dziegielewska KM, Holst CB et al (2017) Brain barriers and functional interfaces with sequential appearance of ABC efflux transporters during human development. Sci Rep 7:11603. https://doi.org/10.1038/s41598-017-11596-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Schumacher U, Mollgård K (1997) The multidrug-resistance P-glycoprotein (Pgp, MDR1) is an early marker of blood-brain barrier development in the microvessels of the developing human brain. Histochem Cell Biol 108:179–182. https://doi.org/10.1007/s004180050159

    Article  CAS  PubMed  Google Scholar 

  121. Lam J, Baello S, Iqbal M et al (2015) The ontogeny of P-glycoprotein in the developing human blood–brain barrier: implication for opioid toxicity in neonates. Pediatr Res. https://doi.org/10.1038/pr.2015.119

    Article  PubMed  Google Scholar 

  122. Ek CJ, Wong A, Liddelow SA et al (2010) Efflux mechanisms at the developing brain barriers: ABC-transporters in the fetal and postnatal rat. Toxicol Lett 197:51–59. https://doi.org/10.1016/j.toxlet.2010.04.025

    Article  CAS  PubMed  Google Scholar 

  123. Soares RV, Do TM, Mabondzo A et al (2016) Ontogeny of ABC and SLC transporters in the microvessels of developing rat brain. Fundam Clin Pharmacol 30:107–116. https://doi.org/10.1111/fcp.12175

    Article  CAS  PubMed  Google Scholar 

  124. Petropoulos S, Gibb W, Matthews SG (2010) Developmental expression of multidrug resistance phosphoglycoprotein (P-gp) in the mouse fetal brain and glucocorticoid regulation. Brain Res 1357:9–18. https://doi.org/10.1016/j.brainres.2010.08.016

    Article  CAS  PubMed  Google Scholar 

  125. Virgintino D, Errede M, Girolamo F et al (2008) Fetal blood-brain barrier P-glycoprotein contributes to brain protection during human development. J Neuropathol Exp Neurol 67:50–61. https://doi.org/10.1097/nen.0b013e31815f65d9

    Article  CAS  PubMed  Google Scholar 

  126. Iqbal M, Gibb W, Matthews SG (2011) Corticosteroid regulation of P-glycoprotein in the developing blood-brain barrier. Endocrinology 152:1067–1079. https://doi.org/10.1210/en.2010-1227

    Article  CAS  PubMed  Google Scholar 

  127. Qin Y, Sato TN (1995) Mouse multidrug resistance 1a/3 gene is the earliest known endothelial cell differentiation marker during blood-brain barrier development. Dev Dyn 202:172–180. https://doi.org/10.1002/aja.1002020209

    Article  CAS  PubMed  Google Scholar 

  128. Orford M, Mean R, Lapathitis G et al (2009) Generation of an ABCG2GFPn-puro transgenic line—a tool to study ABCG2 expression in mice. Biochem Biophys Res Commun 384:199–203. https://doi.org/10.1016/j.bbrc.2009.04.089

    Article  CAS  PubMed  Google Scholar 

  129. Petropoulos S, Gibb W, Matthews SG (2011) Breast cancer-resistance protein (BCRP1) in the fetal mouse brain: development and glucocorticoid regulation. Biol Reprod 84:783–789. https://doi.org/10.1095/biolreprod.110.088468

    Article  CAS  PubMed  Google Scholar 

  130. Iqbal M, Baello S, Javam M et al (2016) Regulation of multidrug resistance P-glycoprotein in the developing blood-brain barrier: interplay between glucocorticoids and cytokines. J Neuroendocrinol 28:12360. https://doi.org/10.1111/jne.12360

    Article  CAS  PubMed  Google Scholar 

  131. Cygalova L, Ceckova M, Pavek P, Staud F (2008) Role of breast cancer resistance protein (Bcrp/Abcg2) in fetal protection during gestation in rat. Toxicol Lett 178:176–180. https://doi.org/10.1016/j.toxlet.2008.03.007

    Article  CAS  PubMed  Google Scholar 

  132. Dunk CE, Pappas JJ, Lye P et al (2018) P-Glycoprotein (P-gp)/ABCB1 plays a functional role in extravillous trophoblast (EVT) invasion and is decreased in the pre-eclamptic placenta. J Cell Mol Med 22:5378–5393. https://doi.org/10.1111/jcmm.13810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Lye P, Bloise E, Nadeem L et al (2019) Breast cancer resistance protein (BCRP/ABCG2) inhibits extra villous trophoblast migration: the impact of bacterial and viral infection. Cells. https://doi.org/10.3390/cells8101150

    Article  PubMed  PubMed Central  Google Scholar 

  134. Yamamoto A, Shofuda T, Islam MO et al (2009) ABCB1 is predominantly expressed in human fetal neural stem/progenitor cells at an early development stage. J Neurosci Res 87:2615–2623. https://doi.org/10.1002/jnr.22094

    Article  CAS  PubMed  Google Scholar 

  135. Bakker M, Jentink J, Vroom F et al (2006) Maternal medicine: drug prescription patterns before, during and after pregnancy for chronic, occasional and pregnancy-related drugs in the Netherlands. BJOG An Int J Obstet Gynaecol 113:559–568. https://doi.org/10.1111/j.1471-0528.2006.00927.x

    Article  CAS  Google Scholar 

  136. Haas DM, Marsh DJ, Dang DT et al (2018) Prescription and other medication use in pregnancy. Obs Gynecol 131:789–798. https://doi.org/10.1097/AOG.0000000000002579

    Article  Google Scholar 

  137. Lupattelli A, Spigset O, Twigg MJ et al (2014) Medication use in pregnancy: a cross-sectional, multinational web-based study. BMJ Open 4:e004365. https://doi.org/10.1136/bmjopen-2013-004365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Sousa JCG, Ribeiro AR, Barbosa MO et al (2018) A review on environmental monitoring of water organic pollutants identified by EU guidelines. J Hazard Mater 344:146–162. https://doi.org/10.1016/j.jhazmat.2017.09.058

    Article  CAS  PubMed  Google Scholar 

  139. Shalat SL, Walker DB, Finnell RH (1996) Role of arsenic as a reproductive toxin with particular attention to neural tube defects. J Toxicol Environ Health 48:253–272. https://doi.org/10.1080/009841096161320

    Article  CAS  PubMed  Google Scholar 

  140. Banerjee K, Utture S, Dasgupta S et al (2012) Multiresidue determination of 375 organic contaminants including pesticides, polychlorinated biphenyls and polyaromatic hydrocarbons in fruits and vegetables by gas chromatography-triple quadrupole mass spectrometry with introduction of semi-quantificatio. J Chromatogr A 1270:283–295. https://doi.org/10.1016/j.chroma.2012.10.066

    Article  CAS  PubMed  Google Scholar 

  141. Modgil S, Lahiri DK, Sharma VL, Anand A (2014) Role of early life exposure and environment on neurodegeneration: implications on brain disorders. Transl Neurodegener 3:1–14. https://doi.org/10.1186/2047-9158-3-9

    Article  CAS  Google Scholar 

  142. Gibbs JL, Yost MG, Negrete M, Fenske RA (2017) Passive sampling for indoor and outdoor exposures to chlorpyrifos, azinphos-methyl, and oxygen analogs in a rural agricultural community. Environ Health Perspect 125:333–341. https://doi.org/10.1289/EHP425

    Article  CAS  PubMed  Google Scholar 

  143. Mercier F, Glorennec P, Thomas O, Le BB (2011) Organic contamination of settled house dust, a review for exposure assessment purposes. Environ Sci Technol 45:6716–6727. https://doi.org/10.1021/es200925h

    Article  CAS  PubMed  Google Scholar 

  144. Parvez S, Gerona RR, Proctor C et al (2018) Glyphosate exposure in pregnancy and shortened gestational length: a prospective Indiana birth cohort study. Environ Heal 17:23. https://doi.org/10.1186/s12940-018-0367-0

    Article  CAS  Google Scholar 

  145. Eskenazi B, Harley K, Bradman A et al (2004) Association of in utero organophosphate pesticide exposure and fetal growth and length of gestation in an agricultural population. Environ Health Perspect 112:1116–1124. https://doi.org/10.1289/ehp.6789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Harari R, Julvez J, Murata K et al (2010) Neurobehavioral deficits and increased blood pressure in school-age children prenatally exposed to pesticides. Environ Health Perspect 118:890–896. https://doi.org/10.1289/ehp.0901582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Debost-Legrand A, Warembourg C, Massart C et al (2016) Prenatal exposure to persistent organic pollutants and organophosphate pesticides, and markers of glucose metabolism at birth. Environ Res 146:207–217. https://doi.org/10.1016/j.envres.2016.01.005

    Article  CAS  PubMed  Google Scholar 

  148. Ye M, Beach J, Martin JW, Senthilselvan A (2017) Pesticide exposures and respiratory health in general populations. J Environ Sci (China) 51:361–370. https://doi.org/10.1016/j.jes.2016.11.012

    Article  CAS  Google Scholar 

  149. Reardon A, Perzanowski MS, Whyatt RM et al (2009) Associations between prenatal pesticide exposure and cough, wheeze, and IgE in early childhood. J Allergy Clin Immunol 123:S21. https://doi.org/10.1016/j.jaci.2010.12.881

    Article  Google Scholar 

  150. Sapbamrer R, Hongsibsong S (2019) Effects of prenatal and postnatal exposure to organophosphate pesticides on child neurodevelopment in different age groups: a systematic review. Environ Sci Pollut Res Int 26:18267–18290. https://doi.org/10.1007/s11356-019-05126-w

    Article  CAS  PubMed  Google Scholar 

  151. Rohlman DS, Arcury TA, Quandt SA et al (2005) Neurobehavioral performance in preschool children from agricultural and non-agricultural communities in Oregon and North Carolina. Neurotoxicology 26:589–598. https://doi.org/10.1016/j.neuro.2004.12.002

    Article  PubMed  Google Scholar 

  152. Halwachs S, Schäfer I, Kneuer C et al (2016) Assessment of ABCG2-mediated transport of pesticides across the rabbit placenta barrier using a novel MDCKII in vitro model. Toxicol Appl Pharmacol 305:66–74. https://doi.org/10.1016/j.taap.2016.06.007

    Article  CAS  PubMed  Google Scholar 

  153. Ridano ME, Racca AC, Flores-Martin JB et al (2017) Impact of chlorpyrifos on human villous trophoblasts and chorionic villi. Toxicol Appl Pharmacol 329:26–39. https://doi.org/10.1016/j.taap.2017.05.026

    Article  CAS  PubMed  Google Scholar 

  154. Ridano ME, Racca AC, Flores-Martín J et al (2012) Chlorpyrifos modifies the expression of genes involved in human placental function. Reprod Toxicol 33:331–338. https://doi.org/10.1016/j.reprotox.2012.01.003

    Article  CAS  PubMed  Google Scholar 

  155. Marchitti SA, Mazur CS, Dillingham CM et al (2017) Inhibition of the human ABC efflux transporters P-gp and BCRP by the BDE-47 hydroxylated metabolite 6-OH-BDE-47: Considerations for human exposure. Toxicol Sci 155:270–282. https://doi.org/10.1093/toxsci/kfw209

    Article  CAS  PubMed  Google Scholar 

  156. Bircsak KM, Richardson JR, Aleksunes LM (2013) Inhibition of human MDR1 and BCRP transporter ATPase activity by organochlorine and pyrethroid insecticides. J Biochem Mol Toxicol 27:157–164. https://doi.org/10.1002/jbt.21458

    Article  CAS  PubMed  Google Scholar 

  157. Epis S, Porretta D, Mastrantonio V et al (2014) ABC transporters are involved in defense against permethrin insecticide in the malaria vector Anopheles stephensi. Parasit Vectors 7:1–7. https://doi.org/10.1186/1756-3305-7-349

    Article  CAS  Google Scholar 

  158. Figueira-Mansur J, Ferreira-Pereira A, Mansur JF et al (2013) Silencing of P-glycoprotein increases mortality in temephos-treated Aedes aegypti larvae. Insect Mol Biol 22:648–658. https://doi.org/10.1111/imb.12052

    Article  CAS  PubMed  Google Scholar 

  159. Burton GJ, Fowden AL, Thornburg KL (2016) Placental origins of chronic disease. Physiol Rev 96:1509–1565. https://doi.org/10.1152/physrev.00029.2015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Imperio GE, Javam M, Lye P et al (2019) Gestational age-dependent gene expression profiling of ATP-binding cassette transporters in the healthy human placenta. J Cell Mol Med 23:610–618. https://doi.org/10.1111/jcmm.13966

    Article  CAS  PubMed  Google Scholar 

  161. Iqbal M, Audette MC, Petropoulos S et al (2012) Placental drug transporters and their role in fetal protection. Placenta 33:137–142. https://doi.org/10.1016/j.placenta.2012.01.008

    Article  CAS  PubMed  Google Scholar 

  162. Sun M, Kingdom J, Baczyk D et al (2006) Expression of the multidrug resistance P-glycoprotein, (ABCB1 glycoprotein) in the human placenta decreases with advancing gestation. Placenta 27:602–609. https://doi.org/10.1016/j.placenta.2005.05.007

    Article  CAS  PubMed  Google Scholar 

  163. Gil S, Saura R, Forestier F, Farinotti R (2005) P-glycoprotein expression of the human placenta during pregnancy. Placenta 26:268–270. https://doi.org/10.1016/j.placenta.2004.05.013

    Article  CAS  PubMed  Google Scholar 

  164. Lye P, Bloise E, Dunk C et al (2013) Effect of oxygen on multidrug resistance in the first trimester human placenta. Placenta 34:817–823. https://doi.org/10.1016/j.placenta.2013.05.010

    Article  CAS  PubMed  Google Scholar 

  165. Walker N, Filis P, Soffientini U et al (2017) Placental transporter localization and expression in the Human: the importance of species, sex, and gestational age differences†. Biol Reprod 96:733–742. https://doi.org/10.1093/biolre/iox012

    Article  PubMed  PubMed Central  Google Scholar 

  166. Kalabis GM, Kostaki A, Andrews MH et al (2005) Multidrug resistance phosphoglycoprotein (ABCB1) in the mouse placenta: fetal protection. Biol Reprod 73:591–597. https://doi.org/10.1095/biolreprod.105.042242

    Article  CAS  PubMed  Google Scholar 

  167. Petropoulos S, Kalabis GM, Gibb W, Matthews SG (2015) Functional changes of mouse placental multidrug resistance phosphoglycoprotein (ABCB1) with advancing gestation and regulation by progesterone. Reprod Sci 14:321–328. https://doi.org/10.1177/1933719107303856

    Article  CAS  Google Scholar 

  168. El-Merahbi R, Löffler M, Mayer A, Sumara G (2015) The roles of peripheral serotonin in metabolic homeostasis. FEBS Lett 589:1728–1734. https://doi.org/10.1016/j.febslet.2015.05.054

    Article  CAS  PubMed  Google Scholar 

  169. Iqbal M, Ho HL, Petropoulos S et al (2012) Pro-inflammatory cytokine regulation of P-glycoprotein in the developing blood-brain barrier. PLoS ONE 7:e43022. https://doi.org/10.1371/journal.pone.0043022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Sadowska GB, Malaeb SN, Stonestreet BS (2010) Maternal glucocorticoid exposure alters tight junction protein expression in the brain of fetal sheep. Am J Physiol Heart Circ Physiol 298:H179–H188. https://doi.org/10.1152/ajpheart.00828.2009

    Article  CAS  PubMed  Google Scholar 

  171. Stonestreet BS, Sadowska GB, McKnight AJ et al (2000) Exogenous and endogenous corticosteroids modulate blood-brain barrier development in the ovine fetus. Am J Physiol Regul Integr Comp Physiol 279:R468-477

    Article  CAS  Google Scholar 

  172. Beck S, Wojdyla D, Say L et al (2010) The worldwide incidence of preterm birth: a systematic review of maternal mortality and morbidity. Bull World Health Organ 88:31–38. https://doi.org/10.2471/BLT.08.062554

    Article  PubMed  Google Scholar 

  173. Roberts D, Brown J, Medley N, Dalziel SR (2017) Antenatal corticosteroids for accelerating fetal lung maturation for women at risk of preterm birth. Cochrane Database Syst Rev. https://doi.org/10.1002/14651858.CD004454.pub3

    Article  PubMed  PubMed Central  Google Scholar 

  174. Moisiadis VG, Matthews SG (2014) Glucocorticoids and fetal programming part 2: Mechanisms. Nat Rev Endocrinol 10:403–411

    Article  CAS  Google Scholar 

  175. Romero IA, Radewicz K, Jubin E et al (2003) Changes in cytoskeletal and tight junctional proteins correlate with decreased permeability induced by dexamethasone in cultured rat brain endothelial cells. Neurosci Lett 344:112–116. https://doi.org/10.1016/S0304-3940(03)00348-3

    Article  CAS  PubMed  Google Scholar 

  176. Calabria AR, Weidenfeller C, Jones AR et al (2006) Puromycin-purified rat brain microvascular endothelial cell cultures exhibit improved barrier properties in response to glucocorticoid induction. J Neurochem 97:922–933. https://doi.org/10.1111/j.1471-4159.2006.03793.x

    Article  CAS  PubMed  Google Scholar 

  177. Narang VS, Fraga C, Kumar N et al (2008) Dexamethasone increases expression and activity of multidrug resistance transporters at the rat blood-brain barrier. Am J Physiol Cell Physiol 295:C440–C450. https://doi.org/10.1152/ajpcell.00491.2007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Zhang Y, Lu M, Sun X et al (2012) Expression and activity of p-glycoprotein elevated by dexamethasone in cultured retinal pigment epithelium involve glucocorticoid receptor and pregnane X receptor. Investig Ophthalmol Vis Sci 53:3508–3515. https://doi.org/10.1167/iovs.11-9337

    Article  CAS  Google Scholar 

  179. Savas Ü, Griffin KJ, Johnson EF et al (1999) Molecular mechanisms of cytochrome P-450 induction by xenobiotics: an expanded role for nuclear hormone receptors. Mol Pharmacol 56:851–857. https://doi.org/10.1124/mol.56.5.851

    Article  CAS  PubMed  Google Scholar 

  180. Kliewer SA, Goodwin B, Willson TM (2002) The nuclear pregnane X receptor: a key regulator of xenobiotic metabolism. Endocr Rev 23:687–702. https://doi.org/10.1210/er.2001-0038

    Article  CAS  PubMed  Google Scholar 

  181. Bauer B, Hartz AM, Fricker G, Miller DS (2004) Pregnane X receptor up-regulation of P-glycoprotein expression and transport function at the blood-brain barrier. Mol Pharmacol 66:413–419. https://doi.org/10.1124/mol.66.3

    Article  CAS  PubMed  Google Scholar 

  182. Ott M, Fricker G, Bauer B (2009) Pregnane X receptor (PXR) regulates P-glycoprotein at the blood-brain barrier: functional similarities between pig and human PXR. J Pharmacol Exp Ther 329:141–149. https://doi.org/10.1124/jpet.108.149690

    Article  CAS  PubMed  Google Scholar 

  183. Lemmen J, Tozakidis IEP, Galla HJ (2013) Pregnane X receptor upregulates ABC-transporter Abcg2 and Abcb1 at the blood-brain barrier. Brain Res 1491:1–13. https://doi.org/10.1016/j.brainres.2012.10.060

    Article  CAS  PubMed  Google Scholar 

  184. Pascussi J-M, Drocourt L, Gerbal-Chaloin S et al (2001) Dual effect of dexamethasone on CYP3A4 gene expression in human hepatocytes. Eur J Biochem 268:6346–6358. https://doi.org/10.1046/j.0014-2956.2001.02540.x

    Article  CAS  PubMed  Google Scholar 

  185. Bilbo SD, Schwarz JM (2012) The immune system and developmental programming of brain and behavior. Front Neuroendocr 33:267–286. https://doi.org/10.1016/j.yfrne.2012.08.006

    Article  CAS  Google Scholar 

  186. Estes ML, McAllister AK (2016) Maternal immune activation: Implications for neuropsychiatric disorders. Science (80-) 353:772–777. https://doi.org/10.1126/science.aag3194

    Article  CAS  Google Scholar 

  187. Feng SYS, Hollis JH, Samarasinghe T et al (2019) Endotoxin-induced cerebral pathophysiology: differences between fetus and newborn. Physiol Rep 7:e13973. https://doi.org/10.14814/phy2.13973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Kwon J-Y, Romero R, Mor G (2014) New insights into the relationship between viral infection and pregnancy complications. Am J Reprod Immunol 71:387–390. https://doi.org/10.1111/aji.12243

    Article  PubMed  PubMed Central  Google Scholar 

  189. Murphy SK, Fineberg AM, Maxwell SD et al (2017) Maternal infection and stress during pregnancy and depressive symptoms in adolescent offspring. Psychiatry Res 257:102–110. https://doi.org/10.1016/J.PSYCHRES.2017.07.025

    Article  PubMed  PubMed Central  Google Scholar 

  190. Amodeo DA, Lai C-Y, Hassan O et al (2019) Maternal immune activation impairs cognitive flexibility and alters transcription in frontal cortex. Neurobiol Dis 125:211–218. https://doi.org/10.1016/J.NBD.2019.01.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Peloggia A, Ali M, Nanda K, Bahamondes L (2018) Zika virus exposure in pregnancy and its association with newborn visual anomalies and hearing loss. Int J Gynecol Obstet 143:277–281. https://doi.org/10.1002/ijgo.12663

    Article  Google Scholar 

  192. Wang X, Rousset CI, Hagberg H, Mallard C (2006) Lipopolysaccharide-induced inflammation and perinatal brain injury. Semin Fetal Neonatal Med 11:343–353. https://doi.org/10.1016/j.siny.2006.04.002

    Article  PubMed  Google Scholar 

  193. Brown AS, Derkits EJ (2010) Prenatal infection and schizophrenia: a review of epidemiologic and translational studies. Am J Psychiatry 167:261–280. https://doi.org/10.1176/appi.ajp.2009.09030361

    Article  PubMed  PubMed Central  Google Scholar 

  194. Landrigan PJ (2010) What causes autism? Exploring the environmental contribution. Curr Opin Pediatr 22:219–225. https://doi.org/10.1097/MOP.0b013e328336eb9a

    Article  PubMed  Google Scholar 

  195. Patterson PH (2012) Maternal infection and autism. Brain Behav Immun 26:393. https://doi.org/10.1016/j.bbi.2011.09.008

    Article  PubMed  Google Scholar 

  196. Pakula AT, Van Naarden BK, Yeargin-Allsopp M (2009) Cerebral palsy: classification and epidemiology. Phys Med Rehabil Clin N Am 20:425–452. https://doi.org/10.1016/j.pmr.2009.06.001

    Article  PubMed  Google Scholar 

  197. Kentner AC, Bilbo SD, Brown AS et al (2019) Maternal immune activation: reporting guidelines to improve the rigor, reproducibility, and transparency of the model. Neuropsychopharmacology 44:245–258. https://doi.org/10.1038/s41386-018-0185-7

    Article  PubMed  Google Scholar 

  198. Careaga M, Murai T, Bauman MD (2017) Maternal immune activation and autism spectrum disorder: from rodents to nonhuman and human primates. Biol Psychiatry 81:391–401. https://doi.org/10.1016/j.biopsych.2016.10.020

    Article  CAS  PubMed  Google Scholar 

  199. Missig G, Robbins JO, Mokler EL et al (2019) Sex-dependent neurobiological features of prenatal immune activation via TLR7. Mol Psychiatry. https://doi.org/10.1038/s41380-018-0346-4

    Article  PubMed  PubMed Central  Google Scholar 

  200. Dang J, Tiwari SK, Lichinchi G et al (2016) Zika virus depletes neural progenitors in human cerebral organoids through activation of the innate immune receptor TLR3. Cell Stem Cell 19:258–265. https://doi.org/10.1016/J.STEM.2016.04.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Yew KH, Harrison CJ (2011) Blockade of Lyn kinase upregulates both canonical and non-canonical TLR-3 pathways in THP-1 monocytes exposed to human cytomegalovirus. Acta Virol 55:243–253. https://doi.org/10.4149/av_2011_03_243

    Article  CAS  PubMed  Google Scholar 

  202. Lucey D, Cummins H, Sholts S (2017) Congenital zika syndrome in 2017. JAMA 317:1368. https://doi.org/10.1001/jama.2017.1553

    Article  PubMed  Google Scholar 

  203. de Miranda-Filho DB, Martelli CMT, de Ximenes RAA et al (2016) Initial description of the presumed congenital zika syndrome. Am J Public Health 106:598–600. https://doi.org/10.2105/AJPH.2016.303115

    Article  PubMed Central  Google Scholar 

  204. Petersen LR, Jamieson DJ, Powers AM, Honein MA (2016) Zika virus. N Engl J Med 374:1552–1563. https://doi.org/10.1056/NEJMra1602113

    Article  CAS  PubMed  Google Scholar 

  205. Bloise E, Petropoulos S, Iqbal M et al (2017) Acute effects of viral exposure on P-glycoprotein function in the mouse fetal blood-brain barrier. Cell Physiol Biochem 41:1044–1050. https://doi.org/10.1159/000461569

    Article  CAS  PubMed  Google Scholar 

  206. Monteiro VRS, Andrade CBV, Gomes HR, Reginatto MW, Império GE, Fontes KN, Spiess DA, Rangel-Junior WS, Nascimento VMO, Lima COS, Sousa RPC, Bloise FF, Matthews SG, Bloise E, Pimentel-Coelho PM, Ortiga-Carvalho TM (2022) Mid-pregnancy poly(I:C) viral mimic disrupts placental ABC transporter expression and leads to long-term offspring motor and cognitive dysfunction. Sci Rep 12(1). https://doi.org/10.1038/s41598-022-14248-0

    Article  PubMed  PubMed Central  Google Scholar 

  207. Bloise E, Bhuiyan M, Audette MC et al (2013) Prenatal endotoxemia and placental drug transport in the mouse: placental size-specific effects. PLoS ONE 8:e65728. https://doi.org/10.1371/journal.pone.0065728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Reginatto MW, Fontes KN, Monteiro VRS et al (2021) Effect of sublethal prenatal endotoxaemia on murine placental transport systems and lipid homeostasis. Front Microbiol 12:706499. https://doi.org/10.3389/fmicb.2021.706499

    Article  PubMed  PubMed Central  Google Scholar 

  209. Fontes KN, Reginatto MW, Silva NL et al (2019) Dysregulation of placental ABC transporters in a murine model of malaria-induced preterm labor. Sci Rep 9:1–13. https://doi.org/10.1038/s41598-019-47865-3

    Article  CAS  Google Scholar 

  210. Andrade CBV, Monteiro VRS, Coelho SVA, Gomes HR, Sousa RPC, Nascimento VMO, Bloise FF, Matthews SG, Bloise E, Arruda LB, Ortiga-Carvalho TM (2021) ZIKV disrupts placental ultrastructure and drug transporter expression in mice. Front Immunol 12. https://doi.org/10.3389/fimmu.2021.680246

    Article  Google Scholar 

  211. Martinelli LM, Fontes KN, Reginatto MW et al (2020) Malaria in pregnancy regulates P-glycoprotein (P-gp/Abcb1a) and ABCA1 efflux transporters in the Mouse Visceral Yolk Sac. J Cell Mol Med 24:10636–10647. https://doi.org/10.1111/jcmm.15682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Martinelli LM, Reginatto MW, Fontes KN et al (2020) Breast cancer resistance protein (Bcrp/Abcg2) is selectively modulated by lipopolysaccharide (LPS) in the mouse yolk sac. Reprod Toxicol 98:82–91. https://doi.org/10.1016/j.reprotox.2020.09.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. von Wedel-Parlow M, Wolte P, Galla HJ (2009) Regulation of major efflux transporters under inflammatory conditions at the blood-brain barrier in vitro. J Neurochem 111:111–118. https://doi.org/10.1111/j.1471-4159.2009.06305.x

    Article  CAS  Google Scholar 

  214. Qosa H, Miller DS, Pasinelli P, Trotti D (2015) Regulation of ABC efflux transporters at blood-brain barrier in health and neurological disorders. Brain Res. https://doi.org/10.1016/j.brainres.2015.07.005

    Article  PubMed  PubMed Central  Google Scholar 

  215. Krzyzaniak N, Bajorek B (2016) Medication safety in neonatal care: a review of medication errors among neonates. Ther Adv Drug Saf 7:102–119. https://doi.org/10.1177/2042098616642231

    Article  PubMed  PubMed Central  Google Scholar 

  216. Seelbach MJ, Brooks TA, Egleton RD, Davis TP (2007) Peripheral inflammatory hyperalgesia modulates morphine delivery to the brain: a role for P-glycoprotein. J Neurochem 102:1677–1690. https://doi.org/10.1111/j.1471-4159.2007.04644.x

    Article  CAS  PubMed  Google Scholar 

  217. Slosky LM, Thompson BJ, Sanchez-Covarrubias L et al (2013) Acetaminophen modulates P-glycoprotein functional expression at the blood-brain barrier by a constitutive androstane receptor-dependent mechanism. Mol Pharmacol 84:774–786. https://doi.org/10.1124/mol.113.086298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Potschka H, Fedrowitz M, Löscher W (2002) P-Glycoprotein-mediated efflux of phenobarbital, lamotrigine, and felbamate at the blood-brain barrier: evidence from microdialysis experiments in rats. Neurosci Lett 327:173–176. https://doi.org/10.1016/S0304-3940(02)00423-8

    Article  CAS  PubMed  Google Scholar 

  219. Chen WD, Fu X, Dong B et al (2012) Neonatal activation of the nuclear receptor CAR results in epigenetic memory and permanent change of drug metabolism in mouse liver. Hepatology 56:1499–1508. https://doi.org/10.1002/hep.25766

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was funded by a Foundation grant from Canadian Institutes of Health Research (CIHR: FDN-148368) to S.G.M. M.E.E. was supported in part by a Queen Elizabeth II Graduate Scholarship in Science and Technology (QEII-GSST). E.B. is supported by the Higher Education Personnel Improvement Coordination (Coordenação de Aperfeiçoamento Pessoal de Nível Superior [CAPES]; finance code 001, CAPES-Print fellowship: 88887.370196/2019-00), The National Council for Scientific and Technological Development (Conselho Nacional de Desenvolvimento Científico e Tecnológico [CNPq]: 10578/2020-5) and the Research Support Foundation of Minas Gerais State (Fundação de Amparo à Pesquisa do Estado de Minas Gerais [FAPEMIG]: APQ-00338-18).  We thank Ms Phetcharawan Lye for the H & E images displayed on Fig. 2 A & B. This work was undertaken in compliance with REB policies at Sinai Health System (protocol n# 18-0057-E).

Author information

Authors and Affiliations

Authors

Contributions

MEE: conceptualization, visualization—figures and tables, writing—original draft. GEI: conceptualization, writing—original draft. EB: conceptualization, writing—review and editing, supervision. SGM: conceptualization, writing—review and editing, supervision, project administration, funding acquisition.

Corresponding author

Correspondence to Stephen G. Matthews.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Consent for publication

Not applicable

Ethics approval and consent to participate

N ot applicable

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eng, M.E., Imperio, G.E., Bloise, E. et al. ATP-binding cassette (ABC) drug transporters in the developing blood–brain barrier: role in fetal brain protection. Cell. Mol. Life Sci. 79, 415 (2022). https://doi.org/10.1007/s00018-022-04432-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00018-022-04432-w

Keywords

Navigation