Skip to main content
Log in

Iron increases lipid deposition via oxidative stress-mediated mitochondrial dysfunction and the HIF1α-PPARγ pathway

  • Original Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Iron is an essential micro-element, involved in multiple biological activities in vertebrates. Excess iron accumulation has been identified as an important mediator of lipid deposition. However, the underlying mechanisms remain unknown. In the present study, we found that a high-iron diet significantly increased intestinal iron content and upregulated the mRNA expression of two iron transporters (zip14 and fpn1). Intestinal iron overload increased lipogenesis, reduced lipolysis and promoted oxidative stress and mitochondrial dysfunction. Iron-induced lipid accumulation was mediated by hypoxia-inducible factor-1 α (HIF1α), which was induced in response to mitochondrial oxidative stress following inhibition of prolyl hydroxylase 2 (PHD2). Mechanistically, iron promoted lipid deposition by enhancing the DNA binding capacity of HIF1α to the pparγ and fas promoters. Our results provide experimental evidence that oxidative stress, mitochondrial dysfunction and the HIF1α-PPARγ pathway are critical mediators of iron-induced lipid deposition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

All materials and data supporting this study are available from the corresponding author (luozhi99@mail.hzau.edu.cn) upon reasonable request.

Abbreviations

6PGD:

6-Phosphogluconate dehydrogenase

ACCα:

Acetyl-CoA carboxylase α

ACSL4:

Acyl-CoA synthetase long-chain family member 4

ATP:

Adenosine triphosphate

B2M:

Beta-2 microglobulin

CAT:

Catalase

DFO:

Deferoxamine mesylate

DMEM:

Dulbecco's Modified Eagles Medium

DMT1:

Divalent metal transporter 1

ELFA:

Translation elongation factor

EMSA:

Electrophoretic mobility-shift assay

FAS:

Fatty acid synthase

Fe:

Iron

FBS:

Fetal bovine serum

FPN1:

Ferroportin

FerM:

Ferritin middle chain

FTH:

Ferritin heavy chain

FTL:

Ferritin light chain

G6PD:

Glucose 6-phosphate dehydrogenase

GAPDH:

Glyceraldehyde-3-phosphate dehydrogenase

GLUT1:

Solute carrier family 2 member 1

HK1:

Hexokinase 1

HK2:

Hexokinase 2

GK:

Glucokinase

GPx:

Glutathione peroxidase

GSH:

Glutathione

GSSG:

Glutathione disulfide

HIF1α:

Hypoxia-inducible factors-1α

HIF2α:

Hypoxia-inducible factor-2α

HPRT:

Hypoxanthine-guanine phosphoribosyltransferase

HRE:

Hypoxia response elements

HSL:

Hormone-sensitive lipase

LDH:

Lactate dehydrogenase

ICDH:

Isocitrate dehydrogenase

ICP-OES:

Inductively coupled plasma optical emission spectrometry

JC-1:

5,5ʹ,6,6ʹ-Tetrachloro-1,1ʹ,3,3ʹ-tetraethyl-imidacarbocyanine iodide

LOX:

Lipoxygenase

LPCAT3:

Lysophosphatidylcholine acyltransferase 3

MDA:

Malondialdehyde

ME:

Malic enzyme

MMP:

Mitochondrial membrane potential

MTT:

3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromide

mtROS:

Mitochondrial ROS

NEFA:

Nonesterified fatty acid

NOX1:

NADPH oxidases 1

NRF2:

Nuclear factor E2-related factor 2

ORO:

Oil red O

PFK:

Phosphofructokinase

PGK1:

Phosphoglycerate kinase 1

PHD2:

Prolyl hydroxylases 2

PK:

Pyruvate kinase

PPARγ:

Peroxisome proliferator-activated receptor γ

PTGS2:

Prostaglandin endoperoxide synthase 2

ROS:

Reactive oxygen species

RPL7:

Ribosomal protein L7

SEM:

Standard error of means

SLC7A11:

Cystine-glutamate antiporter

SREBP1:

Sterol regulatory element-binding proteins 1

TEM:

Transmission electron microscopy

TF:

Transferrin

TFR1:

Transferrin receptor 1

TFR2:

Transferrin receptor 2

TG:

Triglyceride

T-SOD:

Total superoxide dismutase

TUBA:

Tubulin alpha chain

UBCE:

Ubiquitin-conjugating enzyme

UTR:

Untranslated region

ZIP14:

ZRT-IRE-like protein 14

References

  1. Wang J, Pantopoulos K (2011) Regulation of cellular iron metabolism. Biochem J 434:365–381

    Article  CAS  PubMed  Google Scholar 

  2. Ganz T (2013) Systemic iron homeostasis. Physiol Rev 93:1721–1741

    Article  CAS  PubMed  Google Scholar 

  3. Kim CH, Leitch HA (2021) Iron overload-induced oxidative stress in myelodysplastic syndromes and its cellular sequelae. Crit Rev in Oncol Hematol 163:103367

    Article  Google Scholar 

  4. Katsarou A, Pantopoulos K (2020) Basics and principles of cellular and systemic iron homeostasis. Mol Aspects Med 75:100866

    Article  CAS  PubMed  Google Scholar 

  5. Olivares-Rubio HF, Vega-López A (2016) Fatty acid metabolism in fish species as a biomarker for environmental monitoring. Environ Pollut 218:297–312

    Article  CAS  PubMed  Google Scholar 

  6. Xu YH, Hogstrand C, Xu YC, Zhao T, Zheng H, Luo Z (2021) Environmentally relevant concentrations of oxytetracycline and copper increased liver lipid deposition through inducing oxidative stress and mitochondria dysfunction in grass carp Ctenopharyngodon idella. Environ Pollut 283:117079

    Article  CAS  PubMed  Google Scholar 

  7. Ko SH, Kim HS (2020) Menopause-associated lipid metabolic disorders and foods beneficial for postmenopausal women. Nutrients 12:202

    Article  CAS  PubMed Central  Google Scholar 

  8. Ahmed U, Latham PS, Oates PS (2012) Interactions between hepatic iron and lipid metabolism with possible relevance to steatohepatitis. World J Gastroenterol 18:4651–4658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Choi JS, Koh IU, Lee HJ, Kim WH, Song J (2013) Effects of excess dietary iron and fat on glucose and lipid metabolism. J Nutr Biochem 24:1634–1644

    Article  CAS  PubMed  Google Scholar 

  10. Luo Z, Zou GY, Gao Y, Ye HM, Xi WQ, Liu X (2017) Effect of dietary iron (Fe) levels on growth performance, hepatic lipid metabolism and antioxidant responses in juvenile yellow catfish Pelteobagrus fulvidraco. Aquac Nutr 23:1475–1482

    Article  CAS  Google Scholar 

  11. Fuqua BK, Vulpe CD, Anderson GJ (2012) Intestinal iron absorption. J Trace Elem Med Biol 26:115–119

    Article  CAS  PubMed  Google Scholar 

  12. Ko CW, Qu J, Black DD, Tso P (2020) Regulation of intestinal lipid metabolism: current concepts and relevance to disease. Nat Rev Gastroenterol Hepatol 17:169–183

    Article  CAS  PubMed  Google Scholar 

  13. Mansouri A, Gattolliat CH, Asselah T (2018) Mitochondrial dysfunction and signaling in chronic liver diseases. Gastroenterology 155:629–647

    Article  CAS  PubMed  Google Scholar 

  14. Tataranni T, Agriesti F, Mazzoccoli C, Ruggieri V, Scrima R, Laurenzana I, D’Auria F, Falzetti F, Di Ianni M, Musto P, Capitanio N, Piccoli C (2015) The iron chelator deferasirox affects redox signalling in haematopoietic stem/progenitor cells. Br J Haematol 170:236–246

    Article  CAS  PubMed  Google Scholar 

  15. Sumneang N, Siri-Angkul N, Kumfu S, Chattipakorn SC, Chattipakorn N (2020) The effects of iron overload on mitochondrial function, mitochondrial dynamics, and ferroptosis in cardiomyocytes. Arch Biochem Biophys 680:108241

    Article  CAS  PubMed  Google Scholar 

  16. Feng Z, Min L, Chen H, Deng W, Tan M, Liu H, Hou J (2021) Iron overload in the motor cortex induces neuronal ferroptosis following spinal cord injury. Redox Biol 43:101984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Pan YX, Zhuo MQ, Wei CC, Chen GH, Song YF, Luo Z (2018) Oxidative stress and mitochondrial dysfunction mediated Cd-induced hepatic lipid accumulation in zebrafish Danio rerio. Aquat Toxicol 199:12–20

    Article  CAS  PubMed  Google Scholar 

  18. Zhang DG, Zhao T, Hogstrand C, Ye HM, Xu XJ, Luo Z (2021) Oxidized fish oils increased lipid deposition via oxidative stress-mediated mitochondrial dysfunction and the CREB1-Bcl2-Beclin1 pathway in the liver tissues and hepatocytes of yellow catfish. Food Chem 360:129814

    Article  CAS  PubMed  Google Scholar 

  19. Krishnan J, Suter M, Windak R, Krebs T, Felley A, Montessuit C, Tokarska-Schlattner M, Aasum E, Bogdanova A, Perriard E, Perriard JC, Larsen T, Pedrazzini T, Krek W (2009) Activation of a HIF1alpha-PPARgamma axis underlies the integration of glycolytic and lipid anabolic pathways in pathologic cardiac hypertrophy. Cell Metab 9:512–524

    Article  CAS  PubMed  Google Scholar 

  20. Marin J, Lozano E, Perez MJ (2016) Lack of mitochondrial DNA impairs chemical hypoxia-induced autophagy in liver tumor cells through ROS-AMPK-ULK1 signaling dysregulation independently of HIF-1α. Free Radic Biol Med 101:71–84

    Article  CAS  PubMed  Google Scholar 

  21. Lee P, Chandel NS, Simon MC (2020) Cellular adaptation to hypoxia through hypoxia inducible factors and beyond. Nat Rev Mol Cell Biol 21:268–283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Jia Y, Guo Y, Jin Q, Qu H, Qi D, Song P, Zhang X, Wang X, Xu W, Dong Y, Liang Y, Quan C (2020) A SUMOylation-dependent HIF-1α/CLDN6 negative feedback mitigates hypoxia-induced breast cancer metastasis. J Exp Clin Cancer Res 39:42

    Article  PubMed  PubMed Central  Google Scholar 

  23. Luo J, Zhang X, He S, Lou Q, Zhai G, Shi C, Yin Z, Zheng F (2020) Deletion of narfl leads to increased oxidative stress mediated abnormal angiogenesis and digestive organ defects in zebrafish. Redox Biol 28:101355

    Article  CAS  PubMed  Google Scholar 

  24. Rankin EB, Giaccia AJ (2016) Hypoxic Control of Metastasis. Science 352:175–180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Fang W, Chen Q, Cui K, Chen Q, Li X, Xu N, Mai K, Ai Q (2021) Lipid overload impairs hepatic VLDL secretion via oxidative stress-mediated PKCδ-HNF4α-MTP pathway in large yellow croaker (Larimichthys crocea). Free Radic Biol Med 172:213–225

    Article  CAS  PubMed  Google Scholar 

  26. Zhao T, Wu K, Hogstrand C, Xu YH, Chen GH, Wei CC, Luo Z (2020) Lipophagy mediated carbohydrate-induced changes of lipid metabolism via oxidative stress, endoplasmic reticulum (ER) stress and ChREBP/PPARγ pathways. Cell Mol Life Sci 77:1987–2003

    Article  CAS  PubMed  Google Scholar 

  27. Chen GH, Song CC, Pantopoulos K, Wei XL, Zheng H, Luo Z (2022) Mitochondrial oxidative stress mediated Fe-induced ferroptosis via the NRF2-ARE pathway. Free Radic Biol Med 180:95–107

    Article  CAS  PubMed  Google Scholar 

  28. Wu K, Hogstrand C, Chen GH, Wei CC, Li DD, Luo Z (2018) Zn stimulates the phospholipids biosynthesis via the pathways of oxidative and endoplasmic reticulum stress in the intestine of freshwater teleost yellow catfish. Environ Sci Technol 52:9206–9214

    Article  CAS  PubMed  Google Scholar 

  29. Ling SC, Wu K, Zhang DG, Luo Z (2019) Endoplasmic reticulum stress-mediated autophagy and apoptosis alleviate dietary fat-induced triglyceride accumulation in the intestine and in isolated intestinal epithelial cells of yellow catfish. J Nutr 149:1732–1741

    Article  PubMed  Google Scholar 

  30. Dyer WJ, Bligh EG (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917

    Article  PubMed  Google Scholar 

  31. Song CC, Chen GH, Zhong CC, Chen F, Chen SW, Luo Z (2021) Transcriptional responses of four slc30a/znt family members and their roles in Zn homeostatic modulation in yellow catfish Pelteobagrus fulvidraco. Biochim Biophys Acta Gene Regul Mech 1864:194723

    Article  CAS  PubMed  Google Scholar 

  32. Zhong CC, Zhao T, Hogstrand C, Chen F, Song CC, Luo Z (2021) Copper (Cu) induced changes of lipid metabolism through oxidative stress-mediated autophagy and Nrf2/PPARγ pathways. J Nutr Biochem 100:108883

    Article  PubMed  Google Scholar 

  33. Du W, Zhang L, Brett-Morris A, Aguila B, Kerner J, Hoppel CL, Puchowicz M, Serra D, Herrero L, Rini BI, Campbell S, Welford SM (2017) HIF drives lipid deposition and cancer in ccRCC via repression of fatty acid metabolism. Nat Commun 8:1769

    Article  PubMed  PubMed Central  Google Scholar 

  34. Wu K, Tan XY, Xu YH, Chen GH, Zhuo MQ (2018) Functional analysis of promoters of genes in lipid metabolism and their transcriptional response to STAT3 under leptin signals. Genes 9:334

    Article  PubMed Central  Google Scholar 

  35. Chen GH, Luo Z, Chen F, Shi X, Song YF, You WJ, Liu X (2017) PPARα, PPARγ and SREBP-1 pathways mediated waterborne iron (Fe)-induced reduction in hepatic lipid deposition of javelin goby Synechogobius hasta. Comp Biochem Physiol C 197:8–18

    CAS  Google Scholar 

  36. Nam H, Wang CY, Zhang L, Zhang W, Hojyo S, Fukada T, Knutson MD (2013) ZIP14 and DMT1 in the liver, pancreas, and heart are differentially regulated by iron deficiency and overload: implications for tissue iron uptake in iron-related disorders. Haematologica 98:1049–1057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Liuzzi JP, Aydemir F, Nam H, Knutson MD, Cousins RJ (2006) Zip14 (Slc39a14) mediates non-transferrin-bound iron uptake into cells. Proc Natl Acad Sci USA 103:13612–13617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Jenkitkasemwong S, Wang CY, Coffey R, Zhang W, Chan A, Biel T, Kim JS, Hojyo S, Fukada T, Knutson MD (2015) SLC39A14 is required for the development of hepatocellular iron overload in murine models of hereditary hemochromatosis. Cell Metab 22:138–150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zhao N, Zhang AS, Worthen C, Knutson MD, Enns CA (2014) An iron-regulated and glycosylation-dependent proteasomal degradation pathway for the plasma membrane metal transporter ZIP14. Proc Natl Acad Sci USA 111:9175–9180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Katsarou A, Gkouvatsos K, Fillebeen C, Pantopoulos K (2021) Tissue-specific regulation of ferroportin in wild-type and Hjv-/- mice following dietary iron manipulations. Hepatol Commun 5:2139–2150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Iyengar V, Pullakhandam R, Nair KM (2012) Coordinate expression and localization of iron and zinc transporters explain iron-zinc interactions during uptake in Caco-2 cells: implications for iron uptake at the enterocyte. J Nutr Biochem 23:1146–1154

    Article  CAS  PubMed  Google Scholar 

  42. Marra F, Svegliati-Baroni G (2018) Lipotoxicity and the gut-liver axis in NASH pathogenesis. J Hepatol 68:280–295

    Article  CAS  PubMed  Google Scholar 

  43. Ertunc ME, Hotamisligil GS (2016) Lipid signaling and lipotoxicity in metaflammation: indications for metabolic disease pathogenesis and treatment. J Lipid Res 57:2099–2114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Sun X, Li X, Jia H, Wang H, Shui G, Qin Y, Shu X, Wang Y, Dong J, Liu G, Li X (2020) Nuclear factor E2-related factor 2 mediates oxidative stress-induced lipid accumulation in adipocytes by increasing adipogenesis and decreasing lipolysis. Antioxid Redox Signal 32:173–192

    Article  CAS  PubMed  Google Scholar 

  45. Galaris D, Barbouti A, Pantopoulos K (2019) Iron homeostasis and oxidative stress: an intimate relationship. Biochim Et Biophys Acta Mol Cell Res 1866:118535

    Article  CAS  Google Scholar 

  46. Kim SH, Kim H (2018) Inhibitory effect of astaxanthin on oxidative stress-induced mitochondrial dysfunction-a mini-review. Nutrients 10:1137

    Article  PubMed Central  Google Scholar 

  47. Khamseekaew J, Kumfu S, Wongjaikam S, Kerdphoo S, Jaiwongkam T, Srichairatanakool S, Fucharoen S, Chattipakorn SC, Chattipakorn N (2017) Effects of iron overload, an iron chelator and a T-Type calcium channel blocker on cardiac mitochondrial biogenesis and mitochondrial dynamics in thalassemic mice. Eur J Pharmacol 799:118–127

    Article  CAS  PubMed  Google Scholar 

  48. Watts ER, Walmsley SR (2019) Inflammation and Hypoxia: HIF and PHD isoform selectivity. Trends Mol Med 25:33–46

    Article  CAS  PubMed  Google Scholar 

  49. Hu J, Meng F, Hu X, Huang L, Liu H, Liu Z, Li L (2020) Iron overload regulate the cytokine of mesenchymal stromal cells through ROS/HIF-1α pathway in Myelodysplastic syndromes. Leuk Res 93:106354

    Article  CAS  PubMed  Google Scholar 

  50. Kaelin WG Jr, Ratcliffe PJ (2008) Oxygen sensing by metazoans: the central role of the HIF hydroxylase pathway. Mol cell 30:393–402

    Article  CAS  PubMed  Google Scholar 

  51. Belanger AJ, Luo Z, Vincent KA, Akita GY, Cheng SH, Gregory RJ, Jiang C (2007) Hypoxia-inducible factor 1 mediates hypoxia-induced cardiomyocyte lipid accumulation by reducing the DNA binding activity of peroxisome proliferator-activated receptor alpha/retinoid X receptor. Biochem Biophys Res Commun 364:567–572

    Article  CAS  PubMed  Google Scholar 

  52. Li D, Du Y, Yuan X, Han X, Dong Z, Chen X, Wu H, Zhang J, Xu L, Han C, Zhang M, Xia Q (2017) Hepatic hypoxia-inducible factors inhibit PPARα expression to exacerbate acetaminophen induced oxidative stress and hepatotoxicity. Free Radic Biol Med 110:102–116

    Article  CAS  PubMed  Google Scholar 

  53. Zhao YZ, Liu XL, Shen GM, Ma YN, Zhang FL, Chen MT, Zhao HL, Yu J, Zhang JW (2014) Hypoxia induces peroxisome proliferator-activated receptor γ expression via HIF-1-dependent mechanisms in HepG2 cell line. Arch Biochem Biophys 543:40–47

    Article  CAS  PubMed  Google Scholar 

  54. Furuta E, Pai SK, Zhan R, Bandyopadhyay S, Watabe M, Mo YY, Hirota S, Hosobe S, Tsukada T, Miura K, Kamada S, Saito K, Iiizumi M, Liu W, Ericsson J, Watabe K (2008) Fatty acid synthase gene is up-regulated by hypoxia via activation of Akt and sterol regulatory element binding protein-1. Cancer Res 68:1003–1011

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (grant No. 2018YFD0900400).

Funding

This work was supported by the National Key R&D Program of China (grant No. 2018YFD0900400).

Author information

Authors and Affiliations

Authors

Contributions

The authors’ responsibilities were as follows: CCS and ZL designed the experiments; CCS conducted the experiments and sample analyses with the help of GHC, CCZ, TZ, and DGZ; KP provided many critical suggestions for the experimental designs and data analysis; CCS analyzed the data and drafted the manuscript; KP and ZL revised the manuscript; all authors read and approved the final manuscript.

Corresponding author

Correspondence to Zhi Luo.

Ethics declarations

Conflict of interest

All the authors disclosed no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2717 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, CC., Pantopoulos, K., Chen, GH. et al. Iron increases lipid deposition via oxidative stress-mediated mitochondrial dysfunction and the HIF1α-PPARγ pathway. Cell. Mol. Life Sci. 79, 394 (2022). https://doi.org/10.1007/s00018-022-04423-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00018-022-04423-x

Keywords

Navigation